автореферат и диссертация по психологии 19.00.02 для написания научной статьи или работы на тему: ЭЭГ-корреляты эксплицитной и имплицитной обработки эмоциональной информации
- Автор научной работы
- Слободской-Плюснин, Ярослав Юрьевич
- Ученая степень
- кандидата биологических наук
- Место защиты
- Новосибирск
- Год защиты
- 2011
- Специальность ВАК РФ
- 19.00.02
Автореферат диссертации по теме "ЭЭГ-корреляты эксплицитной и имплицитной обработки эмоциональной информации"
На правах рукописи
СЛОБОДСКОЙ-ПЛЮСНИН ЯРОСЛАВ ЮРЬЕВИЧ
ЭЭГ-КОРРЕЛЯТЫ ЭКСПЛИЦИТНОЙ И ИМПЛИЦИТНОЙ ОБРАБОТКИ ЭМОЦИОНАЛЬНОЙ ИНФОРМАЦИИ
19.00.02 - психофизиология
АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата биологических наук
Новосибирск 2011
4848578
Работа выполнена в Лаборатории механизмов регуляции памяти НИИ физиологии СО РАМН, г.Новосибирск
Научный руководитель:
доктор биологических наук Князев Геннадий Георгиевич
Официальные оппоненты: доктор биологических наук, профессор
Вольф Нина Валерьевна
кандидат биологических наук, доцент
Ходанович Марина Юрьевна
Ведущее учреждение:
Институт высшей нервной деятельности и нейрофизиологии РАН,
г. Москва
Защита диссертации состоится « » сЗл релЯ 2011г. на заседании диссертационного совета Д 001.014.01 при НИИ физиологии СО РАМН, 630117 г.Новосибирск, ул. Академика Тимакова, 4, тел. (383) 335-97-54, email: dissovet@physiol.ru
С полным текстом диссертации можно ознакомиться в библиотеке НИИ физиологии СО РАМН
Автореферат разослан « 12- » ллър?3 2011г.
Ученый секретарь диссертационного совета кандидат биологических наук И.И. Бузуева
ВВЕДЕНИЕ
Актуальность темы исследования
Эмоции составляют огромную часть нашей жизни. Можно сказать, что без них не обходится ни одно проявление жизни человека: эмоции побуждают к действию, организуют восприятие, направляют и сосредотачивают внимание, усиливают работу памяти, «раскрашивают» воображение, они плотно вплетены в мыслительные процессы и т.д. Естественно, что эмоции влияют как на поведение человека, так и на его физическое и психическое здоровье (Lane, 2009; Salovey et al., 2000). Известно, что неблагоприятно сказываются на здоровье различные негативные эмоциональные переживания, как, например, чувство враждебности (Smith et al., 2004), депрессия (Steptoe, 2006), беспокойство (Brosschot et al., 2006) и тревожность (Kubzansky et al., 1998), отчаяние (Stem et al., 2001), стресс (Vitaliano et al., 1998) и др. Данные показывают, что, например, депрессия ассоциируется с такими заболеваниями, как коронарная болезнь сердца (Frasure-Smith, Lesperance, 2005), диабет (Katon et al.,
2005) и некоторые формы рака (Onitilo et al., 2006). Кроме того, известно, что подавляющее число психических расстройств, таких как психоз, депрессия, биполярное аффективное расстройство и др., также связывают с особенностями функционирования эмоциональных процессов (Phillips et al., 2003; Waller, Scheidt,
2006). В то же время всё больше данных указывает и на то, что позитивные эмоциональные переживания оказывают положительный эффект на здоровье (Danner et al., 2001; Pressman, Cohen, 2005).
К настоящему времени накоплено значительное количество данных, показывающих, что неосознаваемые эмоции могут влиять как на поведение, так и на физическое и психическое здоровье человека. Активно развивающаяся область исследования сознательных, эксплицитных, и бессознательных, имплицитных, психических процессов привела к пониманию, что сознание есть лишь вершина «когнитивного айсберга» в том смысле, что подавляющее число психических процессов осуществляется бессознательно (Gazzaniga, 1998). Показано также, что некоторые психические расстройства связаны с ограниченной возможностью сознательно воспринимать, переживать и выражать эмоции (Waller, Scheidt, 2006). Все это определяет актуальность изучения механизмов мозга, определяющих специфику сознательной и подсознательной обработки эмоциональной информации.
Одной из важных тем при изучении эмоций человека являются связанные с полом различия в эмоциональной сфере. Значительные тендерные различия обнаружены в ряде психических процессов - восприятии (McGinness, Pribram, 1979), памяти (Volf, Razumnikova, 1999), воображении (Hsu et al., 1994), вербальных (Hyde, Linn, 1988) и пространственных способностях (Vecchi, Girelli, 1998) и т.п. Однако, пожалуй, наиболее существенные половые различия обнаружены в восприятии, обработке и оперировании эмоциональной информацией. Во множестве
3
исследований показано, что женщины успешнее мужчин в осознании и выражении своих эмоций (Burton, Levy, 1989; Cozby, 1973; Grossman, Wood, 1993), более склонны и успешны в описании своих эмоциональных состояний (Asthana, Mandal, 1998; Dimberg, Lundquist, 1990; Hannah et al., 2009), придают большее значение эмоциям, и в большей степени, нежели мужчины, склонны искать соответствие между эмоциями и поведением (Cupchik, Leventhal, 1974; Dienstbier, Munter, 1971; Geer, 1965; Grifíitt, et al., 1974). Кроме того, женщины проявляют больше интереса к социальным стимулам, в частности, к лицам (Proverbio et al., 2008), и значительно успешнее мужчин в понимании информации, передаваемой посредством выражений лиц (Bradley et al., 2001; Frisch, 1995; Hampson et al., 2006; Knyazev et al., 2008a, 2009a; Thayer, Johnsen, 2000). Известно также, что существуют различия между мужчинами и женщинами в активации мозговых структур при обработке эмоциональной информации (Derntl et al., 2010; Lee et al., 2005; Schneider et al., 2001). Можно думать, что существуют эволюционные предпосылки этих отличий (Archer, 2004), однако для более точного и полного установления их причин необходимо более углубленное исследование соответствующих процессов в мозге.
Для успешного изучения процессов мозга, связанных с сознательным и подсознательным восприятием эмоций, очень важным является правильный выбор методов исследования активности мозга и маркеров, адекватно отражающих обработку эмоциональной информации. Данные, накопленные на сегодняшний день, показывают, что сознательные и бессознательные психические процессы различаются по временным характеристикам, задействованным мозговым структурам и уровню анализа воспринимаемой информации. Так, бессознательное восприятие и обработка зрительной информации происходит очень быстро - в первые 250-300 мс, задействует дорзальные (затылочно-теменные) пути головного мозга, и представляет собой поверхностный анализ стимула, необходимый для мгновенного реагирования на мотивационно и/или эмоционально значимый стимул. Сознательная обработка зрительной информации требует больше времени, задействует вентральные (затылочно-височные) пути, и производит детальный анализ стимула. Изучение локализации активности в мозге человека в настоящее время наиболее успешно осуществляется с помощью методов функциональной магнито-резонансной и позитронно-эмиссионной томографии. Однако, эти методы имеют низкое временное разрешение, поэтому для изучения быстро протекающих процессов электроэнцефалография (ЭЭГ) до сих пор является наиболее адекватным методом. Современные методы анализа позволяют в некоторой степени преодолеть присущие ЭЭГ недостатки, такие, например, как невозможность регистрации активности в глубоко расположенных частях мозга. К настоящему времени накоплено значительное количество данных свидетельствующих о том, что связанное с предъявлением стимулов изменение спектральной мощности ЭЭГ в
4
разных частотных диапазонах является коррелятом когнитивных процессов участвующих в обработке предъявляемой информации (Basar et al., 2001; Klimesch, 1999). В частности, существующие данные позволяют считать увеличение мощности тета осцилляции достаточно надежным маркером обработки эмоциональной информации (Aftanas et al., 2001, 2004; Basar et al., 2006, 2008; Krause et al., 2001). Поэтому в настоящем исследовании мы использовали этот маркер для изучения процессов сознательной и подсознательной обработки эмоциональной информации.
Цель и задачи исследования
Целью исследования было изучение временной динамики, спектральных характеристик и корковой локализации осцилляторных ответов при сознательном и подсознательном восприятии эмоциональной информации у лиц разного пола и разной чувствительности к эмоциональному содержанию стимула.
Для достижения цели были поставлены следующие задачи:
1. Исследовать временные характеристики осцилляторных реакций на предъявление эмоциональных стимулов в эксплицитном и имплицитном режимах.
2. Исследовать локализацию источников данных эффектов в эксплицитном и имплицитном режимах.
3. Изучить особенности осцилляторных реакций при восприятии и обработке эмоциональной информации у лиц разного пола и разной чувствительности к эмоциональному содержанию стимулов
Научная новизна исследования
В данной работе впервые было показано следующее:
- индивиды с высокими оценками Эмоционального Интеллекта, Эмоциональной Чувствительности и Эмоциональной Включенности демонстрируют значимо более выраженную тета синхронизацию в ответ на предъявление эмоциональных стимулов, чем индивиды с низкими оценками по данным шкалам;
— различия во временной динамике осцилляторных ответов в эксплицитном и имплицитном режимах обработки эмоциональной информации;
— различия в локализации источников осцилляторной активности при эксплицитной и имплицитной обработке эмоциональной информации;
- наличие тендерных различий в осцилляторной динамике корковых ответов при сознательной и подсознательной обработке эмоциональных стимулов.
Теоретическое и научно-практическое значение работы
Результаты исследования подтверждают связь осцилляторной активности в низкочастотных диапазонах и, в особенности, тета ритма, с процессами восприятия и обработки эмоциональной информации. Более того, понимание этой связи углубляется результатами, показывающими влияние как устойчивых личностных, так и ситуативных особенностей на процессы восприятия и обработки эмоциональной информации. Обнаруженная временная динамика и корковая локализация
5
осцилляторных процессов связанных с сознательным и подсознательным восприятием эмоциональной информации указывают на то, что это восприятие подчиняется законам, ранее выявленным для восприятия нейтральной зрительной информации. Этот результат важен в теоретическом плане, так как существует точка зрения, согласно которой восприятие эмоциональных и нейтральных стимулов идет по разным каналам. Обнаруженные тендерные различия в сознательном и подсознательном восприятии эмоциональной информации позволяют объяснить некоторые хорошо документированные в психологической литературе связанные с полом различия в поведении.
Таким образом, теоретическая значимость работы состоит в том, что результаты данного исследования расширяют понимание особенностей протекания эмоциональных процессов у лиц разного пола и разной эмоциональной чувствительности. В практическом плане результаты исследования представляют ценность, прежде всего, для клинической сферы, т.к. понимание специфики сознательных и бессознательных эмоциональных процессов позволяет лучше познать особенности связанных с ними психических расстройств.
Положения, выносимые на защиту
1. Вызванная синхронизация в тета диапазоне сильнее при предъявлении эмоциональных, чем нейтральных стимулов, а также более выражена у испытуемых с высокими, чем с низкими показателями Эмоционального Интеллекта, Эмоциональной Включенности и Эмоциональной Чувствительности.
2. Обработка эмоциональной зрительной информации в эксплицитном (сознательном) и имплицитном (бессознательном) режимах отличается по временным и пространственным характеристикам тета синхронизации: бессознательная обработка информации происходит в первые 250-300 мс и задействует дорзальный зрительный тракт, тогда как сознательная обработка протекает в более поздние временные интервалы и задействует вентральный зрительный тракт.
3. Существуют тендерные различия в обработке эмоциональной информации: у мужчин более выражен подсознательный, быстрый тип обработки эмоций, тогда как у женщин превалирует сознательная, более медленная и детальная обработка.
Апробация работы
Основные результаты работы были представлены на 6-ти международных и 3-х российских конференциях и конгрессах: на ежегодной конференции Британской ассоциации когнитивной нейронауки (Данди, Шотландия, 2007), на XX Съезде физиологического общества имени Павлова (Москва, 2007), на международной конференции «Нейровизия и нейрофизиология личностных, тревожных расстройств и отклонений, связанных с употреблением психотропных веществ» (Монреаль, Канада, 2007), на международной школе «Регуляторные системы: от базовых
6
исследований к предотвращению болезней» (Тварминне, Финляндия, 2008), на V конференции молодых ученых «Фундаментальные науки и прогресс клинической медицины» (Москва, 2008), на 19-ом биеннале Международного общества этологии человека (Болонья, Италия, 2008), на VI Сибирском физиологическом съезде (Барнаул, 2008), на 14-ом конгрессе Международного психофизиологического общества «Олимпиада мозга» (Санкт-Петербург, 2008), на международной конференции «Мультимодальная нейровизия в нейропсихиатрии» (Стамбул, Турция, 2010).
По результатам исследования опубликовано 12 статей в рецензируемых журналах, из них 9 - в международных и 3 - в российских.
Объем и структура диссертации
Диссертация изложена на 148 страницах текста, включает 25 рисунков, и состоит из введения, обзора литературы, описания методов и результатов исследования, обсуждения результатов, выводов и списка литературы, включающего 567 работ.
МАТЕРИАЛЫ И МЕТОДЫ
Испытуемые и организация исследования
В исследовании приняло участие 109 испытуемых (55 мужчин и 54 женщины) в возрасте от 18 до 32 лет (средний возраст 20.8 ± 3.07), в основном (95 %) студенты высших учебных заведений г. Новосибирска. Все испытуемые были правшами и заявили об отсутствии физических и нервно-психических заболеваний.
Исследование состояло из двух отдельных экспериментов. В Эксплицитном эксперименте 55 испытуемых (23 М, 32 Ж) выполняли задание по определению эмоциональных выражений предъявляемых лиц. В Имплицитном эксперименте 54 участника (32 М, 22 Ж) должны были определить пол человека, чье лицо предъявлялось на экране. В качестве стимульного материала было отобрано 30 фотографий из коллекции Экмана и Фризена (Ekman, Friesen, 1976) с тремя типами эмоциональных выражений: дружелюбные, враждебные и нейтральные.
Кроме того, в обоих экспериментах все испытуемые заполняли ряд личностных опросников.
Оба эксперимента проводились в лаборатории в максимально приближенных друг к другу условиях. Все испытуемые дали информированное согласие на участие в эксперименте. Работа была одобрена Этическим комитетом НИИ физиологии СО РАМН.
Запись ЭЭГ
ЭЭГ регистрировалось по 32 отведениям, расположенным по международной системе 10-20 (Jasper, 1958), с использованием компьютерной программы «Neurovisor-24». Аналоговый сигнал усиливался с помощью многоканального
7
усилителя биопотенциалов с полосой пропускания 0.05-70 Гц и превращался в цифровой с частотой квантования 300 Гц. Референтами служили объединенные электроды, накладываемые на сосцевидные отростки, электрод заземления располагался в центре лба. Параллельно велась регистрация ЭОГ, фиксирующая горизонтальное и вертикальное движение глаз.
Процедура исследования
Испытуемые располагались в кресле в экранированной от электромагнитного поля звукоизолированной слабоосвещенной комнате. В обоих экспериментах до и после выполнения задания регистрировалась спонтанная электрическая активность с закрытыми и открытыми глазами. В Эксплицитном эксперименте участники оценивали предъявляемые им лица с помощью аналоговой шкалы, ранжированной от -100 (крайне враждебное) до +100 (крайне дружелюбное) (см. схему эксперимента на Рис. 1). В Имплицитном эксперименте испытуемые выполняли задание по определению пола предъявляемых лиц (см. Рис. 2). Лица с дружелюбными, враждебными и нейтральными выражениями в обоих экспериментах предъявлялись в случайном порядке.
I сек 4 сек
Шкала оценки
I-1-1
-100 О юо
Рис. 1. Порядок предъявления стимульного материала в Эксплицитном эксперименте
Психометрическое тестирование
Применялись следующие инструменты:
- Опросник на Эмоциональный Интеллект (Barchard's Trait Emotional Intelligence Inventory, Barchard, 2001). Эмоциональный Интеллект определяется как «способность понимать свои собственные чувства и чувства других, и принимать их во внимание при принятии решений» (Salovey, Mayer, 1990).
- Шкала Эмоциональной Включенности, оценивающая насколько сильно испытуемые ассоциировали предъявляемые им лица с живыми людьми и насколько эмоционально на них реагировали (только для Эксплицитного эксперимента).
- Шкала Эмоциональной Осведомленности, характеризующая насколько трудно/легко испытуемым было определять эмоциональные выражения предъявляемых лиц.
- Шкала Эмоциональной Чувствительности. Анализ поведенческих данных Эксплицитного эксперимента показал, что оценки гневливых и веселых лиц
4-7 сек
А
отрицательно коррелируют между собой (г = -0.68, р < 0.001): испытуемые, оценивающие гневные лица, как более враждебные, также склонны оценивать веселые лица, как более дружелюбные. Шкала Эмоциональной Чувствительности рассчитывалась путем сложения абсолютных значений оценок дружелюбных и враждебных лиц характеризуя, таким образом, тенденцию к крайним оценкам.
1 - мужчина
2 - женщина
Рис. 2. Порядок предъявления стимульного материала в Имплицитном эксперименте
Анализ данных
Поведенческие данные
В обоих экспериментах данные были усреднены по полу лица (М vs. Ж) и по каждой эмоциональной категории (враждебное vs. нейтральное vs. дружелюбное). В качестве зависимых переменных в Эксплицитном эксперименте выступали данные оценок лиц, а в Имплицитном - скорость реакции и количество ошибок.
Данные ЭЭГ
Артефакты устранялись методом Анализа Независимых Компонент (Independent Components Analysis, ICA) с помощью EEGLAB toolbox (версии 1.3.11b, v7.1.3.12b) (http://www.sccn.ucsd.edu/eeglab/). и затем при визуальном просмотре записи. ЭОГ использовалась для выявления артефактов, связанных с движением глаз.
Отрезок записи 1000 мс после предъявления лица использовался как тестовый интервал, а отрезок 1000 мс предшествующий предъявлению креста служил престимульным интервалом.
Спектральная мощность в фоне (открытые глаза) рассчитывалась с использованием модифицированного метода Welch и окна Хамминга. Для нормализации данных показатели мощности логарифмировались. Оценки спектральной мощности были усреднены по трем частотным диапазонам: 1-4 Гц (дельта), 4-8 Гц (тета), 8-12 Гц (альфа).
Для оценки изменений спектральной мощности, вызванных предъявлением лиц, рассчитывали ERSP (event-related spectral perturbations) при помощи EEGLAB toolbox. ERSP - это вызванное каким-либо стимулом изменение спектральной
1 сек
4-7 сек
ERSP
мощности по сравнению с предстимульным интервалом, рассчитанное для каждого частотно-временного диапазона (Makeig, 1993). Рассчитывается по формуле:
ERSP = log (test) - log (bkgd)
log (test) - логарифм спектральной мощности в каждом частотно-временном интервале после предъявления стимула;
log (bkgd) - средний для данного частотного интервала логарифм спектральной мощности престимульного интервала.
Временно-частотное разложение сигнала производилось с помощью вейвлета Morlet. Частотное разрешение составило 0.29 Гц, временное разрешение - 6.7 мс.
LORETA
Для локализации источников корковой активности был применен метод Standardized low resolution brain electromagnetic tomography (sLORETA) (Pascual-Marqui, 2002). На основе коркового распределения потенциалов sLORETA рассчитывает стандартизованные значения плотности тока в 6239 объемах мозга размером 5x5x5 мм. В программе используется трехслойная сферическая модель головы, соотнесенная с оцифрованным атласом Talairach and Tournoux (1988, Brain Imaging Centre, Montreal Neurological Institute). Область локализации ограничена областью серого вещества коры и гиппокампа. С помощью sLORETA для каждой эпохи включавшей 990 мс до предъявления креста и 870 мс после начала предъявления лица рассчитывался динамический кросс-спектр с использованием непрерывного окна Гаусса шириной 310 мс. Впоследствии для каждого из 6239 вокселей рассчитывалась плотность тока в тета диапазоне (4-8 Гц).
Статистический анализ данных
Поведенческие данные
Поведенческие данные анализировались с помощью дисперсионного анализа с повторностями (ANOVA) в программе SPSS 13.0. Данные оценок лиц в Эксплицитном эксперименте, и скорость реакции и количество ошибок в Имплицитном эксперименте служили зависимыми переменными, а пол испытуемого и психометрические переменные служили независимыми переменными.
ДанныеЭЭГ
При анализе данных ERSP использовали массовый анализ на уровне отдельных переменных (mass-univariate approach) пакета EEGLAB toolbox. Поправка на множественные сравнения делалась с помощью метода контроля ложных эффектов (False Discovery Rate, FDR) (Holm, 1979) на уровне p = 0.05. Статистический анализ данных локализации источников проводился в пакете sLORETA с помощью метода статистического непараметрического картирования.
РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ И ИХ ОБСУЖДЕНИЕ
Психометрические данные
По данным Эксплицитного эксперимента шкала Эмоционального Интеллекта положительно коррелировала со шкалами Эмоциональной Чувствительности (г = 0.355; р < 0.05) и Эмоциональной Включенности (г = 0.334; р < 0.05). Между собой шкалы ЭЧ и ЭВ не коррелировали (г = -0.036; р = 0.826).
Результаты обоих экспериментов продемонстрировали, что показатели шкалы Эмоционального Интеллекта были выше у испытуемых женского пола, чем у испытуемых мужского (I = 2.591; р = 0.014 для Эксплицитного эксперимента; I = 3.994; р < 0.001 для Имплицитного эксперимента).
Сравнение испытуемых Эксплицитного и Имплицитного экспериментов по шкале Эмоциональной Осведомленности с помощью анализа Т^ев! для независимых выборок показало, что данные по шкале были значимо выше у испытуемых Эксплицитного эксперимента (I = 3.014, р = 0.003,2-сторонняя значимость).
Поведенческие данные
Эксплицитный эксперимент
Анализ АЖ)УА выявил наличие достоверного эффекта типа эмоционального выражения на оценки лиц (Б = 283.64; р < 0.001): гневливые лица оценивались, как наиболее враждебные, веселые лица как наиболее дружелюбные, а нейтральные занимали среднее положение. Тест повторных контрастов показал наличие достоверных различий в оценках между всеми тремя категориями лиц.
Имплицитный эксперимент
Анализ показал, что на скорость реакции при определении пола предъявляемого лица влияет тип эмоционального выражения лица (Б = 8.25, р = 0.001). С помощью теста повторных контрастов было выявлено, что скорость реакции на враждебные лица значимо отличается от скорости реакции на нейтральные (Г = 9.85, р = 0.003) и дружелюбные (Р = 9.84, р = 0.003). Достоверных различий в скорости реакции на нейтральные и дружелюбные лица не было.
Влияние типа эмоционального выражения лица на количество ошибок при определении пола лица также оказалось значимым (Б = 9.14, р = 0.001). Тест повторных контрастов выявил достоверные различия в количество ошибок между враждебными и дружелюбными лицами (И = 8.11, р = 0.006), а также между враждебными и нейтральными (Б = 13.67, р = 0.001). Достоверных же различий между дружелюбными и нейтральными лицами не было.
Таким образом, поведенческие данные указывают на то, что в обоих экспериментах испытуемые реагировали на эмоциональную составляющую предъявляемых стимулов. Достоверные различия в оценках всех трех категорий лиц Эксплицитного эксперимента указывают на то, что участники эксперимента не испытывали сложностей с определением эмоциональных выражений предъявляемых
11
лиц. Увеличение времени реакции и количества ошибок при определении пола гневливых лиц в Имплицитном эксперименте согласуется с многочисленными данными, показывающими, что эмоционально или мотивационно значимые стимулы вызывают непроизвольное отвлечение внимания и замедляют или нарушают обработку целевого стимула (Eschenbeck et al., 2005; Leventhal, Kahler, 2009; McKenna, Sharma, 1995; Williams et al., 1996).
Данные ЭЭГ
Влияние эмоционального содержания стимула на осцилляторные ответы
Частотно-временное представление ERSP, усредненных по всем испытуемым для всех типов эмоциональных выражений представлено на Рис. 3 (слева - для Эксплицитного, справа - для Имплицитного эксперимента).
Рис. 3. Частотно-временное представление ERSP, усредненных по всем испытуемым для всех типов эмоциональных выражений Эксплицитного (слева) и Имплицитного (справа) экспериментов.
Примечание: Ось абсцисс изображает время в мс, ось ординат — частоту в Гц. «Теплые» цвета изображают синхронизацию, увеличение активности в данном частотном диапазоне по сравнению с фоном, «холодные» ~ десинхронизацию, уменьшение активности. Шкала справа указывает значения цветовых эффектов в децибелах.
Было проведено статистическое сравнение эффектов враждебных и нейтральных лиц на ERSP. В обоих экспериментах предъявление враждебных лиц вызывало значимо более выраженную тета синхронизацию, чем предъявление нейтральных (см. Рис. 4).
Этот результат согласуется с множеством наличествующих данных, указывающих на то, что тета синхронизация служит индикатором различения между эмоциональными и нейтральными стимулами (Aftanas et al., 2001, 2004; Kamarajan et al., 2008; Krause et al., 2000a). Это также согласуется с недавними результатами, указывающими на большую тета синхронизацию в ответ на эмоциональные лица по сравнению с нейтральными (Balconi, Pozzoli, 2007, 2009).
220та, 5.5№ I20m».S.SHl
Рис. 4. Область достоверных различий (на уровне р = 0.05 с поправкой на множественные сравнения) в ERSP на враждебные (слева) и нейтральные (справа) лица Имплицитного эксперимента. Примечание: Ось абсцисс изображает время в мс, ось ординат — частоту в Гц. Насыщенность цвета изображает силу эффекта, область зеленого цвета — отсутствие достоверных различий. Шкаю справа указывает значения цветовых эффектов в децибелах. Корковые карты в верхней части рисунка показывают распределение наиболее выраженных эффектов (220 мс. 5.5 Гц)
Индивидуальные различия в осцилляторных реакциях
Статистический анализ эффектов психометрических переменных на ERSP показал, что испытуемые с высокими показателями Эмоционального Интеллекта демонстрируют более выраженную тета синхронизацию в ответ на предъявление лиц, нежели испытуемые с низкими показателями (Рис. 5 верхний ряд). Аналогичные результаты были получены для шкал Эмоциональной Включенности (Рис. 5 средний ряд) и Эмоциональной Чувствительности (Рис. 5 нижний ряд): испытуемые с высокими показателями по этим шкалам продемонстрировали более выраженную тета синхронизацию, чем испытуемые с низкими показателями.
Аспект индивидуальных различий редко принимается в расчет при исследовании механизмов мозга, участвующих в обработке эмоциональной информации. Существуют данные, указывающие на то, что личностные особенности влияют на процесс обработки эмоциональной информации (Knyazev, Slobodskoy-Plusnin, 2007; Stewart et al., 2008). В недавнем исследовании было показано, что пациенты с шизофренией демонстрируют значительно меньшую тета синхронизацию, чем здоровые испытуемые, что согласуется с большим количеством литературных данных, указывающих на сниженную способность к распознаванию эмоций у пациентов с шизофренией (Ramos-Loyo et al., 2009). Полученные в нашем исследовании данные отчетливо демонстрируют, что связанная с обработкой эмоций тета синхронизация в значительной степени зависит от способности распознавать эмоциональную составляющую стимула. Шкалы Эмоциональной Включенности и Эмоциональной Чувствительности измеряли индивидуальные различия в обработке эмоциональной информации в процессе эксперимента. Обе шкалы коррелировали со шкалой Эмоционального Интеллекта, что указывает на их связь с процессом
обработки эмоциональной информации. В то же время они не коррелировали между собой, что показывает, что эти шкалы измеряют разные аспекты процесса обработки эмоций.
Рис. 5. ЕЯвР, усредненные по всем корковым зонам и всем типам лиц у испытуемых с высокими (справа) и низкими (слева) показателями Эмоционального Интеллекта (верхний ряд), Эмоциональной Включенности (средний ряд) и Эмоциональной Чувствительности (нижний ряд). Примечание: Ось абсцисс изображает время в мс, ось ординат - частоту в Гц. Насыщенность г/вета изображает силу эффекта, область зеленого цвета - отсутствие достоверных различий. Шкала справа указывает значения цветовых эффектов в децибелах. Корковые карты в верхней части рисунка указывают распределение наиболее выраженных эффектов
Сравнение Эксплицитного и Имплицитного экспериментов
Статистическое сравнение эффекта экспериментальной парадигмы на ЕЯ8Р представлено на Рис. 8. Как видно из рисунка, первая волна тета синхронизации (в районе 200 мс) более выражена в Имплицитном эксперименте, тогда как вторая волна (в районе 300-400 мс) сильнее проявляется в Эксплицитном эксперименте.
Данные о временной динамике сознательных и бессознательных психических процессов указывают на то, что бессознательные процессы протекают в первые 100300 мс после предъявления стимула, тогда как для возникновения сознания требуется 300-500 мс (ЫЬе1, 2003; МПпег, Ооо<1а1е, 1995; Тге^вшап, КапумвИег, 1998; Уе1шап8, 1991). Исходя из этого, можно предположить, что подсознательный тип обработки информации преобладал в Имплицитном эксперименте, тогда как сознательный - в Эксплицитном. На это также указывают особенности построения двух экспериментальных парадигм: в Эксплицитном эксперименте стимулировался
процесс обработки эмоциональной информации, тогда как в Имплицитном эксперименте задание, выполняемое испытуемыми, не было связано с эмоциональной составляющей стимулов. Кроме того, в пользу такой интерпретации также свидетельствует наличие достоверных различий между испытуемыми двух экспериментов по шкале Эмоциональной Осведомленности.
205 ms, 5.3 Hz 300 ms. 7.2 Hz 205 ms, 5.3 Hz 300 ms, 7.2 Hz
Time (ms| Tim» (mil
Рис. 6. Область достоверных различий в ERSP, усредненных по всем типам эмоциональных выражений, меэкду Имплицитным (слева) и Эксплицитным (справа) экспериментами. Примечание: Ось абсцисс изображает время в мс, ось ординат — частоту в Гц. Насыщенность цвета изображает силу эффекта, область зеленого цвета — отсутствие достоверных различий. Шкала справа указывает значения цветовых эффектов в децибелах. Корковые карты в верхней части рисунка изображают распределение наиболее выраженных эффектов (205 мс, 5.3 Гц и 300 мс, 7.2 Гц)
Локализация источников тети синхронизации в Эксплицитном и Имплицитном экспериментах
Анализ локализации источников sLORETA проводился отдельно для каждого из двух эффектов: для первой волны тета синхронизации в районе 200 мс, превалирующей в Имплицитном эксперименте, и для второй волны, начинающейся в районе 300 мс и более выраженной в Эксплицитном эксперименте (см. Рис. 7). Для обоих эффектов различия между Эксплицитным и Имплицитным экспериментами был и проанализированы на контрастах враждебных и нейтральных, и дружелюбных и нейтральных лиц.
Контраст враждебных и нейтральных лиц на первой волне тета синхронизации (в интервале 100-250 мс) показал наличие различий (t = -2,89; р < 0.005) в правой теменной доле (MNI-координаты: х = 40, у = -80, z = 35, ВА 19) (Рис. 8).
Известно, что правая теменная доля активируется в состоянии эмоционального возбуждения (Tranel, 2000). Активность правой теменной доли также отмечалась при выполнении задания со стимулами эмоционального содержания, не находящимися в центре внимания, как например, задание по определению пола (Iidaka et al., 2001). Кроме того, правая теменная доля является частью дорзального (бессознательного) пути обработки информации, участвующего в координации мгновенных реакций в
ответ на значимые зрительные стимулы (Goodale, Milner, 2008; Milner, Goodale, 1995) и в определении мотивационной значимости (Husain, Nachev, 2007).
Рис. 7. Сравнение осцилляторных ответов в тета диапазоне в Эксплицитном и Имплицитном экспериментах на разницу в реакциях на враждебные и нейтральные лица. Примечание: Оттенки синего цвета изображают отрицательные значения I. Отмечены только области достоверных различий
Контраст дружелюбных и нейтральных лиц показал наличие достоверных различий (t = -2,95; р < 0.005) в правой островковой коре (MNI-координаты: х = 45, у = -10, z=5,BA 13) (Рис. 9).
Островковая кора, в особенности правого полушария (Craig, 2003), связана с восприятием и регуляцией сигналов тела (Critchley et al., 2004; Lamb et al., 2007; Mesulam, Mufson, 1982). Было обнаружено, что островковая кора задействуется в большей степени, когда эмоциональная информация воспринимается пассивно, нежели когда она находится в центре внимания (Hariri et al., 2003). Это согласуется с идеей о том, что островковая кора вместе с правой теменной долей и рядом других структур составляют нервный субстрат фоновых (бессознательных) ощущений (Lane, 2008).
Рис. 8. Сравнение осцилляторных ответов в тета диапазоне в Эксплицитном и Имплицитном экспериментах на разницу в реакциях на дружелюбные и нейтральные лица. Примечание: Оттенки синего цвета изображают отрицательные значения t Отмечены только области достоверных различий
На второй волне тета синхронизации после 250 мс контраст враждебных и нейтральных лиц показал наличие различий (t = 2,47; р < 0.02) в левой височной области (MNI-координаты: х = -65, у = -20, z = -5, ВА 21) (Рис. 9).
В топографических исследованиях было показано участие различных отделов височной извилины в обработке эмоциональных стимулов, в частности, выражений лиц (Haxby et al., 2000; McCarthy, 1999). Эти отделы составляют часть вентрального пути обработки информации, отвечающего за сознательные психические процессы (Goodale, Milner, 2008; Milner, Goodale, 1995).
Щк
Рис. 9. Сравнение осцилляторных ответов в тета диапазоне в Эксплицитном и Имплицитном экспериментах на разницу в реакциях на враждебные и нейтральные лица. Примечание: Оттенки красного цвета изображают положительные значения 1. Отмечены только области достоверных различий
Контраст дружелюбных и нейтральных лиц показал наличие достоверных различий (t = 3,86; р < 0.001) во фронтальной коре билатерально (MNI-координаты: х = 10, у = -40, z = 50, ВА 8), где тета синхронизация была значимо больше в Эксплицитном, чем в Имплицитном эксперименте (см. Рис. 10).
Большое количество литературных данных связывает префронтальную кору с распознаванием и переживанием эмоций (см. напр., Davidson et al., 1992; Morgan et al., 1993; Tomarken et al., 1992; Zink et al., 2010). Кроме того, дорзолатеральная префронтальная кора считается основным нервным субстратом волевого контроля внимания (Fuster, 2002; Posner, 1994), что согласуется с предположением о том, что вторая волна тета синхронизации отражает сознательную обработку эмоциональной информации.
•5 0 .5cm (XI
lX.Y.ZH®.-20.-5|[nm| ; (2.*7Е*0| ;Omi] Ч-Ои£ТЛ
[VJ *в 0 -5 -10 ст
5 0 Леи [ХЗ
ш
Рис. ]0. Сравнение осцилляторних ответов в тета диапазоне в Эксплицитном и Имплицитном экспериментах на разницу в реакциях на дружелюбные и нейтральные лица. Примечание: Оттенки «теплых» цветов изображают положительные значения Г. Отмечены только области достоверных различий
1 R (Y) X.Y,ZH10.4D.50)[mm] ; (1 89Е*0) [Expijmpl _H appy_r*uti4l_250 870 ms] Л ORE ТА
-5 0 +5 cm (X ♦5 0 •5 •10 ■rt, Y) +5 0-5 -10 cm (Z) +5 ► 0 •5 Ш -5 0 ♦5cm (Z, ♦5 XI
Гендерные различия в обработке эмоций
В заключении было проведено статистическое сравнение эффекта пола на 1Ж8Р. Результат для Эксплицитного эксперимента представлен на Рис. 6. Как видно из рисунка, синхронизация с пиком в тета диапазоне в районе 400 мс значительно сильнее проявляется у женщин, чем у мужчин.
Рис. 11. Область достоверных различий в ЕЯвР, усредненных по всем типам эмоциональных выражений лиц эксперимента Эксплицитный, между мужчинами (слева) и женщинами (справа). Примечание: Ось абрисе изображает время в мс, ось ординат - частоту в Гц. Насыщенность цвета изображает силу эффекта, область зеленого г/вета - отсутствие достоверных различий. Шкала справа указывает значения цветовых эффектов в децибелах. Корковые карты в верхней части рисунка изображают распределение наиболее выраженных эффектов
Противоположный результат был получен для Имплицитного эксперимента (см. Рис. 7). Здесь тета синхронизация была значительно сильнее у мужчин, чем у женщин.
Tine (ms> Time (ms)
Рис. 12. Область достоверных различий в ЕЯ^Р, усредненных по всем типам эмоциональных выражений лиц эксперимента Имплицитный, между мужчинами (слева) и женщинами (справа). Примечание: Ось абсцисс изображает время в мс, ось ординат - частоту в Гц. Насыщенность цвета изображает силу эффекта, область зеленого цвета - отсутствие достоверных различий. Шкала справа указывает значения цветовых эффектов в децибелах
Исходя из этих результатов, можно сделать предположение, что мужчины в среднем выделяют больше когнитивных ресурсов на быструю бессознательную обработку эмоций, тогда как женщины - на более медленную, детальную, сознательную обработку. Можно предположить два объяснения этих тендерных различий в обработке эмоций. Первое связано с половыми различиями в поведении. Так как основная цель быстрой обработки эмоционально значимых сигналов -обеспечение стремительной реакции на мотивационно значимые (главным образом, негативные) стимулы, то, можно думать, преобладание такого типа обработки может предрасполагать к мгновенным реакциям борьбы/бегства в ответ на неоднозначные стимулы. Хотя преобладание быстрого типа обработки информации может быть выигрышным в некоторых ситуациях, в современном обществе оно, скорее всего, связано с проблемным поведением, которое в большей степени наблюдается у мужчин, нежели у женщин (Archer, 2004). Литературные данные указывают на ббльшие проявления вербальной и физической агрессии у мужчин, чем у женщин (Huffard et al., 2010; Maccoby, Jacklin, 1980; Tieger, 1980), включая различия между мальчиками и девочками (Brodzinsky et al., 1979; Hess, Hagen, 2006; Potegal, Archer, 2004).
Второе объяснение касается влияния сознательных и бессознательных процессов на физическое и психическое здоровье. Известно, что хотя продолжительность жизни у женщин в среднем выше, чем у мужчин, они чаще сообщают о проблемах со здоровьем и чаще обращаются за медицинской помощью (Gijsbers et al., 1991; Kroenke, Spitzer, 1998; Ladwig et al., 2000; Lahelma et al., 1999). Согласно одному из распространенных объяснений этого явления, существуют тендерные различия в том, как воспринимаются и оцениваются болезненные симптомы (Macintyre et al., 1999). По всей видимости, женщины более склонны к сознательному восприятию физических и психологических проблем, а также к поиску помощи, что отражается в большем количестве жалоб на здоровье.
Предположение о том, что у женщин преобладает сознательный тип обработки эмоций, подтверждается ещё и тем фактом, что в обоих экспериментах показатели шкалы Эмоционального Интеллекта были • достоверно выше у женщин, чем у мужчин. Имея в виду, что ЭИ измеряет уровень «способности понимать свои собственные чувства и чувства других, и принимать их во внимание при принятии решений» (Salovey, Mayer, 1990), можно думать, что высокие оценки по этой шкале связаны с вниманием к эмоциям и тщательной, сознательной их обработкой.
выводы
1. Синхронизация в хета диапазоне более выражена при предъявлении эмоциональных стимулов, чем при предъявлении нейтральных.
2. Индивиды с высокими показателями Эмоционального Интеллекта демонстрируют более сильную тета синхронизацию в ответ на предъявление эмоциональных стимулов, чем индивиды с низкими показателями, что указывает на влияние личностных черт на процесс обработки эмоциональной информации.
3. Испытуемые, более включенные в экспериментальную процедуру, и более чувствительные к эмоциональному содержанию стимулов обнаруживают более выраженную тега синхронизацию, связанную с восприятием и обработкой эмоциональных стимулов, что указывает на влияние ситуативных факторов на процесс обработки эмоциональной информации.
4. Процессы сознательной и бессознательной обработки эмоциональной информации различаются по временным характеристикам. Тета синхронизация, связанная с обработкой эмоциональных стимулов, отмечается в районе 250-300 мс при бессознательной, и после 300 мс при сознательной обработке информации.
5. Процессы сознательной и бессознательной обработки эмоциональной информации различаются по источникам локализации осцилляторной активности. При бессознательной обработке задействуются правая теменная доля, угловая извилина и островковая кора, входящие в состав доразльного пути и участвующие в бессознательных психических процессах. При сознательной обработке активируются височная область, входящая в состав вентрального пути, а также лобные доли — структуры, отвечающие за осуществление сознательных психических процессов.
6. Обнаруженные тендерные различия в осцилляторных реакциях в ответ на предъявление эмоциональных стимулов указывают на различия в доминирующем типе обработки эмоциональной информации: у мужчин превалирует подсознательный, быстрый тип обработки эмоций, тогда как для женщин более характерна сознательная, детальная обработка эмоций.
Список сокращений
ЭВ - Эмоциональная Включенность ЭИ - Эмоциональный Интеллект
ЭО - Эмоциональная Осведомленность ЭЧ - Эмоциональная Чувствительность ЭОГ - электроокулограмма ЭЭГ - электроэнцефалография
ВА - Brodmann area
ERSP - event-related spectral perturbations
sLORETA - standardized low-resolution brain electromagnetic tomography MNI-координаты - координаты структур мозга, альтернативные Talairach atlas,
предложенные Montreal Neurological Institute
СПИСОК РАБОТ, ОПУБЛИКОВАННЫХ ПО ТЕМЕ ДИССЕРТАЦИИ
По перечню рецензируемых ВАК РФ журналов:
1. Князев Г. Г., Слободской-Плюснин Я. Ю., Савостьянов А. И., Левин Е. А, Бочаров А. В. (2008) Реципрокные связи между осцилляторными системами мозга // Журнал Высшей Нервной Деятельности, 58, 5, 576-583.
2. Князев, Г.Г, Слободской-Плюснин, Я.Ю., Бочаров, А.В. (2009). Биологические основы трех типов личности // Вопросы психологии, 5, 82-91.
3. Князев, Г.Г., Савостьянов А.Н., Левин Е.А., Слободской-Плюснин, Я.Ю., Бочаров, А.В. (2009). Электроэнцефалографические корреляты тревожности // Бюллетень СО РАМН, 135(1), 74-80.
Публикации в других изданиях:
1. Knyazev, G.G., Slobodskoj-Plusnin, J. Yu. (2007). Behavioural approach system as a moderator of emotional arousal elicited by reward and punishment cues // Personality and Individual Differences, 42, 49-59.
2. Slobodskoj-Plusnin, J., Knyazev, G., Savostyanov, A., Levin, E. (2007). Behavioural approach system as a moderator of emotional arousal elicited by reward and punishment cues // Clinical EEG and Neuroscience, 38(3), 190.
3. Knyazev, G.G., Bocharov, A.V., Levin, E.A., Savostyanov, A.N., Slobodskoj-Plusnin, J.Yu. (2008). Anxiety and oscillatory responses to emotional facial expressions// Brain Research, 1227,174-188.
4. Slobodskoy-Plusnin J.Yu., Knyazev G.G., Bocharov A.V., Levin E.A., Savostyanov A.N. (2008) Oscillatory dynamics of cortical responses during presentation of emotional facial expressions and its dependence on subject's state during the experiment // International Journal of Psychophysiology 69, 285.
5. Knyazev, G.G., Slobodskoj-Plusnin, J.Yu. (2009). Substance use underlying behavior: investigation of theta and high frequency oscillations in emotionally relevant situations II Clinical EEG and Neuroscience, 40(1), 1-4.
6. Knyazev, G.G., Bocharov, A.V., Slobodskoj-Plusnin, J.Y. (2009). Hostility-and gender-related differences in oscillatory responses to emotional facial expressions // Aggressive Behavior, 35, 502-513.
7. Knyazev, G.G., Slobodskoj-Plusnin, J.Y., Bocharov, A.V. (2009). Event-related delta and theta synchronization during explicit and implicit emotion processing // Neuroscience, 164(4), 1588-1600.
8. Knyazev GG, Slobodskoi-PIyusnin YY, Savost'yanov AN, Levin EA, Bocharov AV. (2010) Reciprocal Relationships Between the Oscillatory Systems of the Brain //Neuroscience and Behavioral Physiology. 40(1), 29-35.
9. Knyazev, G.G., Slobodskoj-Plusnin, J.Y., Bocharov, A.V. (2010). Gender differences in processing of emotional facial expressions. Emotion, 10, 678-687.
21
Автореферат:
Формат 60x84 1/16,1,0п. л. Тираж 100 экз. Заказ №782.10.03.2011
Отпечатано ЗАО РИЦ «Прайс-курьер» ул. Кутателадзе, 4г, т. 330-7202
Содержание диссертации автор научной статьи: кандидата биологических наук, Слободской-Плюснин, Ярослав Юрьевич, 2011 год
1. ВВЕДЕНИЕ.
2. ОБЗОР ЛИТЕРАТУРЫ.
2.1 Сознательное и бессознательное восприятие и обработка информации.
2.2 Тендерные различия в восприятии и обработке эмоциональной информации.
2.3 ЭЭГ и ритмы головного мозга.
2.4 Имплицитные экспериментальные парадигмы.
2.5 Восприятие эмоциональных выражений лиц.
3. МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЯ.
3.1 Испытуемые и организация исследования.
3.2 Инструменты.
3.3 Запись ЭЭГ.
3.4 Процедура исследования.
3.5 Анализ данных.
3.6 Статистический анализ данных.
4. РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ.
4.1 Психометрические данные.
4.2 Поведенческие данные.
4.3 Данные ЭЭГ.
5. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ.;.
5.1 Поведенческие данные.
5.2 Данные ЭЭГ.
ВЫВОДЫ.
Введение диссертации по психологии, на тему "ЭЭГ-корреляты эксплицитной и имплицитной обработки эмоциональной информации"
Актуальность темы исследования
Эмоции составляют огромную часть нашей жизни. Можно сказать, что-без них не обходится ни одно проявление жизни человека: эмоции побуждают к действию, организуют восприятие; направляют и сосредотачивают внимание, усиливают работу памяти, «раскрашивают» воображение, они плотно вплетены в мыслительные процессы и т.д. Естественно,1 что эмоции влияют как на поведение человека, так и на его физическое и психическое здоровье (Lane, 2009; Salovey et al., 2000). Известно, что неблагоприятно сказываются на здоровье различные негативные эмоциональные переживания, как, например, чувство^ враждебности (Smith et al., 2004), депрессия (Steptoe, 2006), беспокойство (Brosschot et al., 2006) и тревожность (Kubzansky et al., 1998), отчаяние (Stern et al., 2001), стресс (Vitaliano et al., 1998) и др. Данные показывают, что, например, депрессия ассоциируется с такими заболеваниями, как коронарная болезнь сердца (Frasure-Smith, Lesperance, 2005), диабет (Katon et al., 2005) и некоторые формы рака (Onitilo et al., 2006). Кроме того, известно, что подавляющее число психических расстройств, таких как психоз, депрессия, биполярное аффективное расстройство и др., также связывают с особенностями функционирования эмоциональных процессов (Phillips et al., 2003; Waller, Scheidt, 2006). В то же время всё больше данных указывает и на то,- что позитивные эмоциональные переживания оказывают положительный эффект на здоровье (Danner et al., 2001; Pressman, Cohen, 2005).
К настоящему времени накоплено значительное количество-эмпирических данных, показывающих, что неосознаваемые эмоции могут влиять как на поведение, так и на физическое и психическое здоровье человека. Активно развивающаяся область исследования сознательных, эксплицитных, и бессознательных, имплицитных, психических процессов привела к пониманию, что сознание есть лишь вершина «когнитивного айсберга» в том смысле, что подавляющее число психических процессов осуществляется бессознательно (Gazzaniga, 1998). Показано также, что некоторые психические расстройства связаны с ограниченной возможностью сознательно воспринимать, переживать и выражать эмоции (Waller, Scheidt-, 2006). Все это определяет актуальность изучения механизмов мозга, определяющих специфику сознательной и подсознательной обработки эмоциональной информации.
Одной из*важных тем при изучении эмоций человека являются связанные с полом различия в эмоциональной сфере. Значительные тендерные различия обнаружены в ряде психических процессов - восприятии (McGinness, Pribram, 1979), памяти (Volf, Razumnikova, 1999), воображении (Hsu et al., 1994), вербальных (Hyde, Linn, 1988) и пространственных способностях (Vecchi, Girelli, 1998) и т.п. Однако, пожалуй, наиболее существенные половые различия обнаружены в восприятии, обработке и оперировании эмоциональной информацией. Во множестве исследований показано, что женщины успешнее мужчин в осознании* и выражении своих эмоций (Burton, Levy, 1989; Cozby; 1973; Grossman, Wood, 1993), более склонны и успешны в описании своих эмоциональных состояний (Asthana, Mandal, 1998; Dimberg, Lundquist, 1990; Hannah et al., 2009), придают большее значение эмоциям, и в большей степени, нежели мужчины, склонны искать соответствие между эмоциями и поведением (Gupchik, Leventhal, 1974; Dienstbier, Munter, 1971; Geer, 1965; Griffitt, et al., 1974). Кроме того, женщины проявляют больше интереса к социальным стимулам, в частности, к лицам (Proverbio et al., 2008), и значительно успешнее мужчин в понимании информации, передаваемой посредством выражений лиц (Bradley et al., 2001; Frisch, 1995; Hampson et al., 2006; Knyazev et al., 2008a, 2009a; Thayer, Johnsen, 2000). Известно также, что существуют различия между мужчинами и женщинами в активации мозговых структур при обработке эмоциональной информации (Derntl et al., 2010; Lee et al., 2005; Schneider et al., 2001). Можно думать, что существуют эволюционные предпосылки этих отличий (Archer, 2004), однако для более точного и полного установления их причин необходимо более углубленное исследование соответствующих процессов в мозге.
Для успешного изучения процессов-мозга, связанных с сознательным и подсознательным восприятием эмоций,, очень, важным является правильный выбор методов исследования активности мозга и маркеров, адекватно отражающих обработку эмоциональной, информации. Данные, накопленные на сегодняшний день, показывают, что сознательные и бессознательные психические процессы различаются по временным характеристикам, задействованным мозговым структурам и уровню анализа воспринимаемой информации. Так, бессознательное восприятие и обработка зрительной информации происходит очень быстро — в первые 250-300' мс, задействует дорзальные (затылочно-теменные) пути головного мозга, и представляет собой поверхностный анализ стимула, необходимый для мгновенного реагирования на мотивационно и/или эмоционально значимый стимул. Сознательная обработка зрительной информации требует больше времени, задействует вентральные (затылочно-височные) пути, и производит детальный анализ стимула. Изучение локализации активности в мозге человека в настоящее время* наиболее успешно осуществляется с помощью методов функциональной магнито-резонансной и позитронно-эмиссионной томографии. Однако, эти методы имеют низкое временное разрешение, поэтому для- изучения быстро протекающих процессов электроэнцефалография (ЭЭГ) до сих пор- является наиболее адекватным методом. Современные методы анализа позволяют в некоторой степени преодолеть присущие ЭЭГ недостатки, такие, например, как невозможность регистрации активности в глубоко, расположенных частях мозга. К настоящему времени накоплено значительное количество данных свидетельствующих о том, что связанное с предъявлением стимулов изменение спектральной мощности ЭЭГ в разных частотных диапазонах является коррелятом когнитивных процессов участвующих в обработке предъявляемой информации (Basar et al., 2001; Klimesch, 1999). В частности, существующие данные позволяют считать увеличение мощности тета осцилляций достаточно надежным маркером обработки эмоциональной информации (Aftanas et al., 2001, 2004; Basar et al., 2006, 2008; Doppelmayr et al., 2002). Поэтому в настоящем исследовании мы использовали этот маркер для изучения процессов сознательной и подсознательной обработки эмоциональной информации.
Цель и задачи исследования
Целью исследования было изучение временной динамики, спектральных характеристик и корковой локализации осцилляторных ответов при сознательном и подсознательном восприятии эмоциональной информации у лиц разного пола и разной чувствительности к эмоциональному содержанию стимула.
Для достижения цели были поставлены следующие задачи:
1 .Исследовать временные характеристики осцилляторных ответов на предъявление эмоциональных стимулов в эксплицитном и имплицитном режимах.
2. Исследовать локализацию источников данных эффектов в эксплицитном и имплицитном режимах.
3. Исследовать особенности осцилляторных реакций при восприятии и обработке эмоциональной информации у лиц разного пола и разной чувствительности к эмоциональному содержанию стимулов.
Научная новизна исследования
В данной работе впервые было показано следующее: индивиды с высокими оценками по психометрическим шкалам Эмоционального Интеллекта, Эмоциональной Чувствительности и Эмоциональной Включенности демонстрируют значимо более выраженную тета синхронизацию в ответ на предъявление эмоциональных стимулов, чем индивиды с низкими оценками по данным шкалам;
- различия во временной динамике осцилляторных ответов в эксплицитном и имплицитном режимах обработки эмоциональной информации;
- различия в локализации источников осцилляторной' активности при эксплицитной и имплицитной обработке эмоциональной информации;
- наличие тендерных различий в осцилляторной динамике корковых ответов при сознательной и подсознательной обработке эмоциональных стимулов.
Теоретическое и научно-практическое значение работы
Результаты исследования подтверждают связь осцилляторной активности в низкочастотных диапазонах и, в особенности, тета ритма, с процессами восприятия и обработки эмоциональной информации. Более того, понимание этой связи углубляется результатами, показывающими влияние как устойчивых личностных, так и ситуативных особенностей на процессы- восприятия и обработки эмоциональной информации. Обнаруженная временная динамика и корковая локализация осцилляторных процессов связанных с сознательным и подсознательным восприятием эмоциональной информации указывают на то, что это восприятие подчиняется законам, ранее выявленным для восприятия нейтральной зрительной информации. Этот результат важен в теоретическом плане, так как существует точка зрения, согласно которой восприятие эмоциональных и нейтральных стимулов идет по разным каналам. Обнаруженные тендерные различия в сознательном и подсознательном восприятии эмоциональной информации позволяют объяснить некоторые хорошо документированные в психологической литературе связанные с полом различия в поведении.
Таким образом, теоретическая значимость работы состоит в том, что результаты данного исследования расширяют понимание особенностей протекания эмоциональных процессов у лиц разного пола и разной эмоциональной чувствительности. В практическом плане результаты исследования представляют ценность, прежде всего, для клинической сферы, т.к. понимание специфики сознательных и бессознательных эмоциональных процессов позволяет лучше познать особенности связанных с ними психических расстройств.
Основные положения, выносимые на защиту
1. Вызванная синхронизация в тета диапазоне сильнее при предъявлении эмоциональных, чем нейтральных стимулов, а также более выражена у испытуемых с высокими, чем с низкими показателями Эмоционального Интеллекта, Эмоциональной Включенности и Эмоциональной Чувствительности.
2. Обработка эмоциональной зрительной информации в эксплицитном (сознательном) и имплицитном (бессознательном) режимах отличается по временным и пространственным характеристикам тета синхронизации: бессознательная обработка информации происходит в первые 250-300 мс и задействует доразльный зрительный тракт, тогда как сознательная обработка протекает в более поздние временные интервалы и задействует вентральный зрительный тракт.
3. Существуют тендерные различия в обработке эмоциональной информации: у мужчин более выражен подсознательный, быстрый тип обработки эмоций, тогда как у женщин превалирует сознательная, более медленная и детальная обработка.
Апробация работы
Основные результаты работы были представлены на б-ти международных и 3-х российских научных мероприятиях: на ежегодной конференции Британской ассоциации когнитивной нейронауки (Данди, Шотландия, 2007), на XX Съезде физиологического общества имени Павлова (Москва, 2007), на международной конференции «Нейровизия и нейрофизиология личностных, тревожных расстройств и отклонений, связанных с употреблением психотропных веществ» (Монреаль, Канада, 2007), на международной школе «Регуляторные системы: от базовых исследований к предотвращению болезней» (Тварминне, Финляндия, 2008), на V конференции молодых ученых «Фундаментальные науки и прогресс клинической медицины» (Москва, 2008), на 19-ом биеннале Международного общества этологии человека (Болонья, Италия, 2008), на VI Сибирском физиологическом съезде (Барнаул, 2008), на 14-ом конгрессе Международного психофизиологического общества «Олимпиада мозга» (Санкт-Петербург, 2008), на международной конференции «Мультимодальная нейровизия в нейропсихиатрии» (Стамбул, Турция, 2010).
По результатам исследования опубликовано 12 статей в рецензируемых журналах, из них 9 - в международных и 3 - в российских.
Объем и структура диссертации
Диссертация изложена на 148 страницах, включает 24 рисунка, и состоит из введения, обзора литературы, описания методов и результатов исследования, обсуждения результатов, выводов и списка литературы, включающего 567 работ.
Заключение диссертации научная статья по теме "Психофизиология"
выводы
1. Синхронизация в тета диапазоне более выражена при предъявлении эмоциональных, чем при предъявлении нейтральных стимулов.
2. Индивиды с высокими показателями Эмоционального Интеллекта демонстрируют более сильную тета синхронизацию в ответ на предъявление эмоциональных стимулов, чем индивиды с низкими показателями, что указывает на влияние личностных черт на процесс обработки эмоциональной информации.
3. Испытуемые, более включенные в экспериментальную процедуру, и более чувствительные к эмоциональному содержанию стимулов обнаруживают более выраженную тета синхронизацию, связанную с восприятием и обработкой эмоциональных стимулов, что указывает на влияние ситуативных факторов на процесс обработки эмоциональной информации.
4. Процессы сознательной и бессознательной обработки эмоциональной информации различаются по временным характеристикам. Тета синхронизация, связанная с обработкой эмоциональных стимулов, отмечается в районе 250-300 мс при бессознательной и после 300 мс при сознательной обработке информации.
5. Процессы сознательной и бессознательной обработки эмоциональной информации различаются по источникам локализации осцилляторной активности. При бессознательной обработке задействуются правая теменная доля, угловая извилина и островковая кора, входящие в состав доразльного пути и участвующие в бессознательных психических процессах. При сознательной обработке активируются височная область, входящая в состав вентрального пути, а также лобные доли — структуры, отвечающие за осуществление сознательных психических процессов.
6. Обнаруженные тендерные различия в осцилляторных реакциях в ответ на предъявление эмоциональных стимулов указывают на различия в доминирующем типе обработки эмоциональной информации: у мужчин превалирует подсознательный, быстрый тип обработки эмоций, тогда как для женщин более характерна сознательная, более медленная и детальная обработка эмоций.
Список литературы диссертации автор научной работы: кандидата биологических наук, Слободской-Плюснин, Ярослав Юрьевич, Новосибирск
1. Adolphs R, Tranel D, Damasio H, Damasio A.R. (1995) Fear and the human amygdala//Journal ofNeuroscience, Vol 15, 5879-5891
2. Adolphs R., Damasio H., Tranel D., Damasio A.R. (1996) Cortical Systems for the Recognition of Emotion in Facial Expressions // J. Neurosci.; 16(23): 7678 7687.
3. Adolphs R. (1999) The Human Amygdala and Emotion // Neuroscientist; 5(2): 125- 137.
4. Adolphs R., Russell J. A., Tranel D. (1999) A Role for the Human Amygdala in Recognizing Emotional Arousal From Unpleasant Stimuli // Psychological Science; 10(2): 167-171.
5. Adolphs R., Damasio H., Tranel D., Cooper G., Damasio A.R. (2000) A Role for Somatosensory Cortices in the Visual Recognition of Emotion as Revealed by Three-Dimensional Lesion Mapping // J. Neurosci.; 20(7): 2683 2690.
6. Adolphs R. (2002a) Recognizing emotion from facial expressions: psychological and neuro-logical mechanisms // Behav. Cogn. Neurosci. , V. 1, P. 21-61.
7. Adolphs R. (2002b) Neural systems for recognizing emotion // Curr. Opin. Neurobiol., V. 12, №2, P. 169-177.
8. Adrian E.D. (1941) Afferent discharges to the cerebral cortex from peripheral organs // Journal of Physiology, V. 100, P. 159-191
9. Adrian E.D., Matthews B.H.C. (1934) The Berger rhythm: potential changes from the occipital lobes in man // Brain, V. 57, P. 354.
10. Aftanas LI, Varlamov AA, Pavlov SV, Makhnev VP, Reva NY (2001) Affective picture processing: event-related synchronization within individually defined human theta band is modulated by valence dimension. Neurosci Lett 303:115-118.
11. Aftanas- L.I., Pavlov S.V., Reva N.V., Varlamov A.A. (2003a) Trait anxiety impact on the EEG theta band power changes during appraisal-of threatening and pleasant visual stimuli // International Journal of Psychophysiology, V. 50, P. 205-212.
12. Aftanas L.I., Varlamov A.A., Reva N.V., Pavlov S.V. (2003b) Disruption of early event-related theta synchronization of human EEG in alexithymics viewing affective pictures // Neuroscience Letters, V. 340, P. 57-60.
13. Aftanas LI, Reva NV, Varlamov AA, Pavlov SV, Makhnev VP (2004) Analysis of evoked EEG synchronization and desynchronization in conditions of emotional activation in humans: temporal and topographic characteristics. Neurosci Behav Physiol 34:859-867.
14. Ako M, Kawara T, Uchida S, Miyazaki S, Nishihara K, Mukai J, Hirao K, Ako J, Okubo Y. (2003) Correlation between electroencephalography and heart rate variability during sleep //Psychiatry Clin Neurosci. 57(l):59-65.
15. Aleksanov S.N., Vainstein I.I., Preobrahenskaya L.A. (1986) Relationship between electrical potentials of the hippocampus, amygdala and neocortex during instrumental conditioned reflex // Neuroscience and Behavioral. Physiology, V. 16, P. 199-207.
16. Alexander, G.M., Hines, M. (2002) Sex differences in response to children's toys in nonhuman primates (Cercopithecus aethiops sabaeus). Evolution and Human Behavior, 23, 467-479.
17. Alford RD. (1983) Sex differences in lateral facial facility: The effects of habitual emotional concealment. Neuropsychologia 21: 567-570.
18. Alkire MT. (1998) Quantitative EEG correlations with brain glucose metabolic rate during anesthesia in volunteers // Anesthesiology. 89(2):323-33.
19. AIlison T, Wood CC, Goff WR. (1983) Brain stem auditory, pattern-reversal visual, and short-latency somatosensory evoked potentials: latencies in relation to age, sex, and brain and'body size // Electroencephalogr Clin Neurophysiol. 55(6):619-36.
20. Allison, T., Ginter, H., McCarthy, G., Nobre, A.C., Puce, A., Luby, M., Spencer, D.D. (1994). Face recognition in human1 extrastriate cortex. Journal of Neurophysiology, 71, 821- 825.
21. Allison T., Puce A., Spencer D.D., McCarthy G. (1999) Electrophysiological studies of human face perception. I: Potentials generated in occipitotemporal cortex by face and non-face stimuli // Cereb. Cortex, V. 9, P. 415-430.
22. Alper KR (1999) The EEG and Cocaine Sensitization: A Hypothesis. J Neuropsychiatry Clin Neurosci 11:209-221.
23. Alper K.R., GuntherW., Prichep L.S. (1998) Correlation of qEEG with PET in schizophrenia // Neuropsychobiology, V. 38, P. 50-56.
24. Alper KR, John ER, Brodie J, Gunther W, Daruwala R, Prichep LS (2006) Correlation of PET and qEEG in normal subjects. Psychiatry Res: Neuroimaging 146:271-282.
25. Amassian YE, Somarsondaram M, Rothwell JC, Britton T, Cracco JB, Cracco RQ, Maccabee PJ, Day BL. (1991) Parasthesias are elicited by single pulse magnetic coil stimulation of motor cortex in susceptible humans. Brain 114:2505-2520.
26. Amir N, Freshman M, Foa E (2002) Enhanced Stroop interference for threat in social phobia. J Anxiety Disorder 16:1-9.
27. Andersen P., Andersson S. A. Physiological basis of the alpha rhythm. New York: Appleton-Century-Crofts, 1968.
28. Anderson A, Phelps E. (2002) Is the human amygdala critical for the subjective experience of emotion? Evidence of intact dispositional affect in patients with amygdala lesions. J Cogn Neurosci. 14:709 -20.
29. Anokhin A., Vogel F. EEG (1996) Alpha rhythm frequency and intelligence in normal adults. Intelligence, 23 (1): 1-14.
30. Archer, J. (2004). Sex Differences in Aggression in Real-World Settings: A Meta-Analytic Review. Reviews in General Psychology, 8, 291-322.
31. Archer J. (2009) Does sexual selection explain human sex differences in aggression? // Behav Brain Sci. 32(3-4):249-66
32. Ashley V., Vuilleumier P., Swick D. Time course and specificity of event-related potentials to emotional expressions // Neuroreport, 2004, V. 15, P. 211216.
33. Asthana HS, Mandal MK. (1998) Hemifacial asymmetry in emotion expressions. Behav Modif 22: 177-183.
34. Augustine J. (1996) Circuitry and functional aspects of the insular lobe in primates including humans. Brain Res Brain Res Rev; 22:229-44.
35. Axelrod Y, Yovel G. (2010) External facial features modify the representation of internal facial features in the Fusiform Face Area. // Neuroimage. 2010 Apr 17. Epub ahead of print.
36. Axmacher N, Henseler MM, Jensen O, Weinreich I, Elger CE, Fell J. (2010) Cross-frequency coupling supports multi-item working memory in the human hippocampus // Proc Natl Acad Sci USA. 107(7):3228-33. Epub ahead of print.
37. Bachmann T (2000) Microgenetic approach to the conscious mind. John Benjamins Pub. Co, Amsterdam, Philadelphia.
38. Balconi M.; Pozzoli U. (2007) Event-related oscillations (EROs) and event-related potentials (ERPs) comparison in facial expressiomrecognition // Journals of Neuropsychology, V. 1, № 2, P. 283-294.
39. Balconi M., Lucchiari C. (2006) EEG correlates (event-related desynchronization) of emotional face elaboration: a temporal analysis // Neurosci. Lett., Y. 392, P. 118-123.
40. Balconi M, Lucchiari C, (2008) Consciousness and arousal effects on emotional face processing as revealed by brain oscillations. A gamma1 band analysis. Int J Psychophysiol 67:41-46.
41. Balconi M, Pozzoli U. (2008) Event-related oscillations (ERO) and event-related potentials (ERP) in emotional face recognition. // Int J Neurosci; 118(10):1412-24.
42. Balconi, M., Pozzoli, U. (2003). Face-selective processing and the effect of pleasant and unpleasant emotional expressions on ERP correlates. International Journal of Psychophysiology, 49, 67-74.
43. Balconi M, Pozzoli U. (2009) Arousal effect on emotional face comprehension: frequency band changes in different time intervals // Physiol Behav. 97(3-4):455-62.
44. Barchard KA (2001) Emotional and social intelligence: Examining its place in the nomological network. Unpublished Doctoral Dissertation: Department of Psychology; University of British Columbia; Vancouver BC; Canada.
45. Barchard KA, Christensen MM (2007) Dimensionality and higher-order factor structure of self-reported emotional intelligence. Pers Ind Diff 42: 971-985.
46. Basar E, Ba§ar-Eroglu C, Karaka§ S, Schurmann M. (2001) Gamma,, alpha, delta, and theta oscillations govern cognitive processes. // Int J Psychophysiol. 39(2-3):241-8.
47. Basar E, Giintekin B, Ôniz A (2006) Principles of oscillatory brain dynamics and a treatise of recognition of faces and facial expressions. Prog Brain Res 159:43-62.
48. Basar, E., Basar-Erogly, G., Rosen, B., Schutt A. (1984) A new approach to endogenous event-related potentials in man: relation between EEG and P300 wave. // International Journal of Neurosciences 26, 161-180.
49. Basar E, Schmiedt-Fehr C, Oniz A, Baçar-Eroglu C (2008) Brain oscillations evoked by the face of a loved person. Brain Res 12:105-115.
50. Basar E. Brain function and oscillations. I. Brain oscillations // Principles and approaches, Berlin, Heidelberg: Springer, 1998.
51. Basar E. Brain Function and Oscillations. II. Integrative Brain Function // Neurophysiology and Cognitive Processes, Berlin, Heidelberg: Springer, 1999.
52. Basar E, Baçar-Eroglu C, Karaka§ S, Schurmann M. (1999) Are cognitive processes manifested in event-related gamma, alpha, theta and delta oscillations in the EEG? //Neurosci Lett. 259(3): 165-8.
53. Basar, E., Basar-Eroglu, C., Karakas, S., Schurmann, M. (2000) Brain oscillations in perception and memory. International Journal of Psychophysiology, 35, 95-124.
54. Basar-Eroglu C, Basar E, Demiralp T, et al (1992) P300-response: possible psychophysiological correlates in delta and theta frequency channels: a review. Int J Psychophysiol 13:161-179.
55. Basar E, Ozgôren M, Oniz A, Schmiedt C, Baçar-Eroglu C. (2007) Brain oscillations differentiate the picture of one's own grandmother. // Int J Psychophysiol. 2007 Apr;64(l):81-90.
56. Bastiaansen M.C., Posthuma D., Groot P.F., de Geus E.J. (2002) Event-related alpha and theta responses in a visuo-spatial working memory task. Clinical neurophysiology, 113 (12): 1882-1893.
57. Batty M, Taylor MJ. (2006) The development of emotional face processing during childhood. Dev Sci. 9(2):207-20.
58. Bechara A, Damasio H, Tranel D, Damasio A. (1997) Deciding advantageously before knowing the advantageous strategy. Science; 275:1293— 5.
59. Behrmann M, Moscovitch M, Winocur G (1994). Intact visual imagery and impaired visual perception in a patient with visuaLagnosia. J Exp Psychol Hum Percept Perform 20 (5): 1068-87.
60. Bentin S, Allison T, Puce A, Perez E, McCarthy G (1996) Electrophysiological studies of face perception in humans // Journal of Cognitive Neuroscience, 8(6), pp 551-565.
61. Berger H. Uber das elecktroenzephalogramm des menschen I // Archive Psychiatrie (Nervenkrankheiten), 1929, V. 87, P. 527-570.
62. Bhattacharya J, Petsche H, Feldmann U, Rescher B. (2001) EEG gamma-band phase synchronization between posterior and frontal cortex during mental rotation in humans // Neurosci Lett. 31 l(l):29-32.
63. Biele, C., Grabowska, A. (2006). Sex differences in perception of emotion intensity in dynamic and static facial expressions. Experimental Brain Research, 171, 1-6.
64. Biraben A, Taussig D, Thomas P, Even C, Vignal J, Scarabin J, Chauvel P. (2001) Fear as the main feature of epileptic seizures. // J Neurol Neurosurg Psychiatry. 70:186-91.
65. Blair R.J.R., Morris J.S., Frith C.D., Perrett D.I., Dolan R.J. / Dissociable neural responses to facial expressions of sadness and anger // Brain, 1999, V. 122, P. 883-893.
66. Bland BH, Oddie SD. (2001) Theta band oscillation and synchrony in the hippocampal formation and associated structures: the case for its role in sensorimotor integration // Behav Brain Res.; 127(1-2): 119-36.
67. Blau V.C., Maurer U., Tottenham N., McCandliss B.D. The face-specific N170 component is modulated by emotional facial expression // Behavioral and Brain Functions, 2007, V. 3, № 7, P. 11-113.
68. Blinowska K, Kus R, Kaminski M, Janiszewska J. (2010) Transmission of Brain Activity During Cognitive Task. // Brain Topogr. Epub ahead of print.
69. Blonder LX, Bowers D, Heilman KM. (1991) The role of the right hemisphere in emotional communication // Brain. 114 (Pt 3):1115-27.
70. Bobes M.A., Martin M., Olivares E., Valdes-Sosa M. (2000) Different scalp topography of brain potentials related to expression and identity matching of faces // Brain Res. Cogn. Brain Res., V. 9, P. 249-260.
71. Bois-Reymond, A.D. (1849) Untersuchungen uiber thierische Electricitdt // Dritter Abschnitt. Untersuchung.
72. Borod JC, Koff E, White B. (1983) Facial asymmetry in posed and spontaneous expressions of emotion. Brain Cogn 2:. 165-175.
73. Botzel K, Griisser OJ. (1989) Electric brain potentials evoked by pictures of faces and non-faces: a search for "face-specific" EEG-potentials. // Exp Brain Res. 77(2):349-60.
74. Bradley MM, Codispoti M, Sabatinelli D, Lang PJ. (2001) Emotion and motivation II: sex differences in picture processing // Emotion. 1(3):300-19.
75. Brady, K.T., Randall, C.L. (1999). Gender differences in substance use disorders. Psychiatry Clinical North American, 22, 241-52.
76. Bragin A., Jando G., Nadasdy Z., Hetke J., Wise K., Buzsaki G. (1995). Gamma (40-100 Hz) oscillation in the hippocampus of the behaving rat. J. Neurosci. 15,47-60
77. Bromm B, Meier W, Scharein E. (1989) Pre-stimulus/post-stimulus relations in EEG spectra and their modulations by an opioid and an antidepressant // Electroencephalogr Clin Neurophysiol. 73(3): 188-97.
78. Brosschot J, Gerin W, Thayer J. (2006) The perseverative cognition hypothesis: a review of worry, prolonged stress-related physiological activation, and health. J Psychosom Res; 60:113-24.
79. Burton LA, Levy J. (1989) Sex differences in the lateralized processing of facial emotion. Brain Cogn 11: 210-228.
80. Bush G, Luu P, Posner M. (2000) Cognitive and emotional influences in anterior cingulate cortex. Trends Cogn S ci; 215-22.
81. Buzsaki G., Horvath Z., Urioste R., Hetke J., Wise K. (1992) High-frequency network oscillation in the hippocampus. Science 256: 1025-1027.
82. Buzsaki G. Theta oscillations in the hippocampus // Neuron, 2002, V. 33, P. 325-340.
83. Buzsaki G., Leung L. W., Vanderwolf C. H. (1983). Cellular bases of hippocampal EEG in the behaving rat. Brain Res. 287, 139-171
84. Buzsaki G, Draguhn A (2004) Neuronal oscillations in cortical networks. Science 304:1926-1929.
85. Buzsaki G (2005) Theta rhythm of navigation: link between path integration and landmark navigation episodic and semantic memory. Hippocampus 15:827-840.
86. Campanella S., Quinet P., Bruyer R., Crommelinck M., Guérit J.M. Categorical perception of happiness and fear facial expressions: An ERP study // J. Cogn. Neurosci., 2002, V. 14, P. 210-227.
87. Campbell, A. (2005). Sex differences in direct aggression: What are the psychological mediators? Aggressive and Violent Behavior, 11, 237-264.
88. Canli T, Zhao Z, Desmond JE, Kang E, Gross J, Gabrieli JDE (2007) An flVIRI study of personality influences on brain reactivity to emotional stimuli. Behav Neurosci 115:33-42.
89. Cannon W. (1928) The mechanism of emotional disturbance of bodily functions. N Engl J Med; 198:877- 84.
90. Cantero J.L., Atienza M. The role of neural synchronization in the emergence of cognition across the wake-sleep cycle // Review of Neuroscience, 2005, V. 16, P. 69-83.
91. Cantero J.L., Atienza M., Salas R.M., Gormez C.M. Alpha EEG coherence in different brain states: an electrophysiological index of the arousal level in human subjects //Neuroscience Letters, 1999, V. 271, P. 167-170.
92. Cantero J.L., Atienza M., Salas R.M. State-modulation of cortico-cortical connections underlying normal EEG alpha variants // Physiology and Behavior, 2000, V. 71, P. 107-115.
93. Cardinal R N., Parkinson J A., Hall J, Everitt B J. (2002) Emotion and motivation: the role of the amygdala, ventral striatum, and prefrontal cortex // Neuroscience & Biobehavioral Reviews, Volume 26, Issue 3, Pages 321-352
94. Carmel D, Bentin S. (2002) Domain specificity versus expertise: factors, influencing distinct processing of faces. // Cognition. 83(1): 1-29.
95. Carretie L., Martin-Loeches M., Hinojosa J.A., Mercado F. Emotion and attention interaction studied through event-related potentials // Journal of Cognitive Neuroscience, 2001, V. 13, P. 1109-1128.
96. Chang PF, Arendt-Nielsen L, Chen AC. (2002) Differential cerebral responses to aversive auditory arousal versus muscle pain: specific EEG patterns are associated with human pain processing. // Exp Brain Res. 147(3):387-93.
97. Charloux A, Piquard F, Ehrhart J, Mettauer B, Geny B, Simon C, Brandenberger G. (2002) Time-courses in renin and blood pressure during sleep in humans. // J Sleep Res. 1 l(l):73-9.
98. Chiu YC, Esterman M, Han Y, Rosen H, Yantis S. (2010) Decoding Task-based Attentional Modulation during Face Categorization // J Cogn Neurosci. Epub ahead of print.
99. Cohen, H.D., Rosen, R.C., Goldstein, L., (1976) Electroencephalographic laterality changes during human sexual orgasm. // Archives of Sexual Behavior 5, 189-199.
100. Cohen A.S., Rosen R.C., Goldstein L. EEG hemispheric asymmetry during sexual arousal: psychophysiological patterns in responsive, unresponsive, and dysfunctional men // Journal of Abnormal Psychology, 1985, V. 94, P. 580-590.
101. Cohen RA, Paul R, Zawacki T, Moser D, Sweet L, Wilkinson H. (2001) Emotional and personality changes following cingulotomy. Emotion. 1:38 -50.
102. Compton AS. (1974) Who's hysterical? // J Sex Marital Ther. 1(2):158-74.
103. Cook I.A., O'Hara R., Uijtdehaage S.H., Mandelkern M., Leuchter A.F. Assessing the accuracy of topographic EEG mapping for determining local brain function // Electroencephalography and Clinical Neurophysiology, 1998, V. 107, P. 408-414.
104. Cozby PC. (1973) Self-disclosure: a literature review. // Psychol Bull. 79(2):73-91.
105. Craig AD. (2003) Interoception: the sense of the physiological condition of the body. Curr Opin Neurobiol. 13:500 —5.
106. Crick F. Function of the thalamic reticular complex: the searchlight hypothesis // Proceedings of National Academy of Science USA, 1984, V. 81, P. 4586-4590.
107. Critchley HD, Wiens S, Rotshtein P, Ohman A, Dolan RJ (2004). Neural systems supporting interoceptive awareness. Nat. Neurosci. 7 (2): 189-95.
108. Cunningham, W.A., Raye, C.L., Johnson, M.K. (2004). Implicit and explicit evaluation: fMRI correlates of valence, emotional intensity, and control in the processing of attitudes. Journal of Cognitive Neuroscience, 16, 1717-1729.
109. Cupchik, G, Leventhal, H (1974) Consistency between expressive behavior and the elevation of humorous stimuli: The role of sex and self-observation // Journal of Personality and Social Psychology. Vol 30(3): 429442.
110. Cuthbert B.N., Schupp H.T., Bradley M.M., Birbaumer N., Lang P.J. Brain potentials in affective picture processing: covariation with autonomic arousal and affective report // Biological Psychology, 2000, V. 52, P. 95-111.
111. Danner D, Snowdon D, Friesen W. (2001) Positive emotions in early life and longevity: findings from the nun study. J Pers Soc Psychol; 80: 804-13.
112. Dannlowski U, Kersting A, Lalee-Mentzel J, Donges US, Arolt V, Suslow T. (2006) Subliminal affective priming in clinical depression and comorbid anxiety: a longitudinal investigation // Psychiatry Res. 143(l):63-75.
113. Damasio AR. (1994) Descartes' Error: Emotion, Reason, and the Human Brain. New York: G.P. Putnam's Press.
114. Davidson RJ (1992) Anterior cerebral asymmetry and the nature of emotion. Brain Cogn 20:125-151.
115. Davidson R.J., Putnam K.M., Larson C.L. (2000) Dysfunction in the neural circuitry of emotion regulation a possible prelude to violence // Science, V. 289, P. 591-594.
116. Debener S, Herrmann CS, Kranczioch C, Gembris D, Engel AK. (2003) Top-down attentional processing enhances auditory evoked gamma band activity // Neuroreport. 14(5):683-6.
117. Delorme A, Makeig S. (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. // JNeurosci Methods. 2004 Mar 15;134(1):9-21.
118. Derntl B, Finkelmeyer A, Eickhoff S, Kellermann T, Falkenberg DI, Schneider F, Habel U. (2010) Multidimensional assessment of empathic abilities: neural correlates and gender differences // Psychoneuroendocrinology. 2010 Jan;35(l):67-82.
119. Diaz MT, McCarthy G. (2007) Unconscious word processing engages a distributed network of brain regions // J Cogn Neurosci. 19(11): 1768-75.
120. Dienstbier RA, Munter PO. (1971) Cheating as a function of the labeling of natural arousal // J Pers Soc Psychol. 17(2):208-13.
121. Dimberg, U., Lundquist, L.O. (1990). Gender differences in facial reactions to facial expressions. Biological Psychology, 30, 151-159.
122. Dimberg U, Thunberg M, Elmehed K. (2000) Unconscious facial reactions to emotional facial expressions. // Psychol Sci. 2000 Jan;l l(l):86-9.
123. Dockree P.M., Kelly S.P., Roche R.A., Hogan M.J., Reilly R.B., Robertson I.H. Behavioral and physiological impairments of sustained attention after traumatic brain injury // Brain Research and Cognitive Brain Research, 2004, V. 20, P. 403-414.
124. Doppelmayr M., Klimesch W., Schweiger J., Stadler W., Rohm D. (2000) The time locked theta response reflects interindividual differences in human memory performance. Neuroscience Letters, 278: 141-144.
125. Drevets WC, Raichle M. (1998) Reciprocal suppression of regional cerebral blood flow during emotional versus higher cognitive processes: implications for interactions* between emotion and cognition. .Cogn Emot;,, 12:353- 85.
126. Duda PD, Brown J. (1984) Lateral asymmetry of positive and negative emotions. Cortex 20: 253-261.138; Eagly, A., Johnson, B.T. (1990). Gender and leadership style: A metaanalysis. Psychological Bulletin, 108, 233-256.
127. Ehlers CL, Schuckit MA. (1990) EEG fast frequency activity in the sons of alcoholics: //Biol Psychiatry! 27(6) :631-41.
128. Eimer M, Holmes A. (2002) An ERP study on the time- course, of emotional face.processing. // Neuroreport. 2002 Mar 25; 13(4):427-31.
129. Eimer, M., Holmes, A. (2007). Event-related brain potential correlates of emotional face processing: Neuropsychologia, 45 , 15-31.
130. Eisenberger NI, Lieberman M, Williams K. (2003) Does rejection hurt? An fMRI study of social exclusion. Science; 302:290-2.
131. Ekman P (1993) Facial expression and emotion. American Psychologist 48:384-392.
132. Ekman, P., Friesen, W.V. (1976). Pictures of Facial Affect. Consulting Psychologist Press, Palo Alto.
133. Ellis H.D., Young A.W. Faces in their social and biological context / Young A.W. Face and Mind // New York, NJ, Oxford University Press, 1998. P. 67-95.
134. Eschenbeck H, Kohlmann C, Heim-Dreger U, Koller D, Lesser M (2005) Processing bias and anxiety in primary school children: A modified emotional Stroop color-naming task using pictorial facial expressions. Psychol Sci 46:451-465.
135. Etkin A, Klemenhagen K, Dudman J, Rogan M, Hen R, Kandel R, Hirsch J. (2004) Individual differences in trait anxiety predict the response of the basolateral amygdala to unconsciously processed fearful faces. Neuron; 44:1043-55.
136. Feinstein JS, Goldin PR, Stein MB, Brown GG, Paulus MP. (2002) Habituation of attentional networks during emotion processing // Neuroreport. 13(10):1255-8.
137. Fell J, Klaver P, Elger CE, Fernández G. (2002) Suppression of EEG gamma activity may cause the attentional blink // Conscious Cogn. 11(1):114-22.
138. Fell J, Klaver P, Lehnertz K, Grunwald T, Schaller C, Elger CE, Fernández G. (2001) Human memory formation is accompanied by rhinal-hippocampal coupling and decoupling //Nat Neurosci. 4(12): 1259-64.
139. Ferger, B., Kropf, W., Kuschinsky, K., (1994) Studies on electroencephalogram (EEG) in rats suggest that moderate doses of cocaine or damphetamine activate Dl, rather than D2, receptors. Psychopharmacology 114, 297-308.
140. Fingelkurts A.A., Fingelkurts A.A., Krause C.M., Kaplan A.Y. (2003) Systematic rules underlying spectral pattern variability: experimental results and a review of the evidence, The International journal of neuroscience, 113 (10):1447-1473.
141. Finlay, B. L. & Darlington, R. B. (1995). Linked regularities in the development and evolution of mammalian brains. Science, 268, 1578-1584.
142. Fitzgibbon SP, Pope KJ, Mackenzie L, Clark CR, Willoughby JO. (2004) Cognitive tasks augment gamma EEG power // Clin Neurophysiol. 2004 Aug; 115(8): 1802-9.
143. Fivush R, Brotman MA, Buckner JP, Goodman SH (2000) Gender differences in parent-child emotion narratives // Sex Roles, Volume 42, Numbers 3-4
144. Fox E., Derakshan N., Shoker L. Trait anxiety modulates the electrophysiological indices of rapid spatial orienting towards angry faces // Neuroreport., 2008, V. 19, №3, P. 259-263.
145. Fox NA. (1991) If it's not left, it's right. Electroencephalograph asymmetry and the development of emotion. // Am Psychol. 1991 Aug;46(8):863-72.
146. Frasure-Smith N, Lesperance F. (2005) Reflections on depression as a cardiac risk factor. Psychosom Med; 67(Suppl 1):S19 -S25.
147. Frisch I. (1995) Mimisches Verhalten von Frauen und MYCnnern in gleichgeschlechtlichen dyadischen Interaktionen Facial activities of women and men in dyadic interactions with a partner of same sex.. Z Diff Diagn Psychol 16: 33-42.
148. Friston KJ (1997) Testing for anatomical specified regional effects. Hum Brain Mapp 5:133-136.
149. Fujita BN, Harper RG, Wiens AN (1980) Encoding-decoding of nonverbal emotional messages: Sex differences in // Journal of Nonverbal Behavior, Volume 4, Number 3
150. Fujita Y., Sato T. (1964) Intracellular records from hippocampal pyramidal cells in rabbit during theta rhythm activity // J Neurophysiol 27: 1011-1025.
151. Fuster JM (2002) Frontal lobe and cognitive development. J Neurocytol 31:373-385.
152. Gai Y, Li Y, Zhu Y, Zhao L. (2009) Gender difference in face recognition // Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 26(l):47-9.
153. Gaztelu, J.M., Garcia-Austt, E., & Bullock, T.H. (1991). Electrocorticograms of hippocampal and dorsal cortex of two reptiles: comparison with possible mammalian homologs. Brain, Behavior and Evolution, 37(3), 144-60.
154. Gazzaniga M. (1998) The Mind's Past. Berkeley: University of California Press.
155. Gazzaniga M, Ivry RB, Mangun GR. (2002) Cognitive Neuroscience -The Biology of the Mind. New York: Norton.
156. Geer JH. (1965) The developmental scale to measure fear // Behav Res Ther. 3:45-53.
157. Genco S, de Tommaso M, Prudenzano AM, Savarese M, Puca FM. (1994) EEG features in juvenile migraine: topographic analysis of spontaneous and visual evoked brain electrical activity: a comparison with adult migraine. // Cephalalgia. 14(l):41-6
158. George MS, Ketter TA, Parekh PI, Herscovitch P, Post RM. (1996) Gender differences in regional cerebral blood flow during transient self-induced sadness or happiness. Biol Psychiat 40(9): 859-871.
159. Gevins A., Smith M.E., McEvoy L., Yu D. (1997) High-resolution EEG mapping of cortical activation related to working memoiy: effects of task difficulty, type of processing, and practice. Cerebral Cortex, 7: 374-385.
160. Gevins A., Smith M. (2000) Neurophysiological Measures of Working Memory and Individual Differences in Cognitive Ability and Cognitive Style. Cerebral Cortex, 10 (9): 829-839.
161. Gijsbers van Wijk, C.M., van Vliet, K.P., Kolk, A.M., Everaerd, W.T. (1991). Symptom sensitivity and sex differences in physical morbidity: a* review of health surveys in the United States and The Netherlands. Women Health, 17, 91-124.
162. Gillies M. J I, Traub R. D., LeBeau F. E. N., Davies C. H., Gloveli T., Buhl E. H., Whittington M. A. (2002) A model of atropine-resistant theta oscillations in rat hippocampal area CA1. J. Physiol. 543, 779-793
163. Glasgow S. D., Chapman C. A. (2007) Local generation of theta-frequency EEG activity in the parasubiculum. J. Neurophysiol. 97, 3868-3879
164. Gomez A, Gomez R (2002) Personality traits of the behavioural approach and inhibition systems: Associations with processing of emotional stimuli. Pers Ind Diff 32:1299-1316.
165. Goodale MA, Milner AD (1992) Separate visual pathways for perception and action. Trends Neurosci 15:20-25.
166. Goodale MA, Milner AD (2008) Two visual systems re-viewed. Neuropsychologia 46:774-785.
167. Gordon E, Barnett KJ, Cooper NJ, Tran N, Williams LM. (2008) An "integrative neuroscience" platform: application to profiles of negativity and positivity bias // J Integr Neurosci. 7(3):345-66.
168. Gorno-Tempini M.L., Price C.J., Josephs O., Vandenberghe R., Cappa S.F., Kapur N., Frackowiak R.S.J. The neural systems sustaining face and proper-name processing // Brain, 1998, V. 121, P. 2103-2118.
169. Gorno-Tempini ML, Pradelli S, Serafmi M, Pagnoni G, Baraldi P, Porro C, Nicoletti R, Umita C, Nichelli P (2001) Explicit and incidental facial1 expression processing: an fMRI study. Neurolmage 14:465^473.
170. Grace A.A. The tonic/phasic model of dopamine system regulation: its relevance for understanding- how stimulant, abuse can alter basal ganglia function // Drug and Alcohol Dependence, 1995, V. 37, P. 111-129.
171. Gray J.A. Cognition, emotion, conscious experience and the brain. / In T. Dalgleish, M. Power, Handbook of Cognition and Emotion // New York, Wiley, 1999.
172. Gray J.A. McNaughton, N. (2000) The Neuropsychology of anxiety: an enquiry into the functions of the septo-hippocampal system, 2nd ed. // Oxford, ■Oxford University Press.
173. Green MJ, Phillips ML. (2004) Social threat perception and the evolution of paranoia // Neurosci Biobehav Rev.; 28(3):333-42.
174. Griffitt W, May J, Veitch R. (1974) Sexual stimulation and interpersonal behavior: heterosexual- evaluative responses, visual behavior, and physical proximity. // J Pers Soc Psychol. 30(3):367-77.
175. Grill-Spector K., Knouf N., Kanwisher N. The fusiform face area subserves face perception, not generic within-category identification // Nat. Neurosci., 2004, V. 7, P. 555-562.
176. Gronfier C, Simon C, Piquard F, Ehrhart J, Brandenberger G. (1999) Neuroendocrine processes underlying ultradian sleep regulation in man. // J Clin Endocrinol Metab. 84(8):2686-90.
177. Grossman, M., Wood, W. (1993) Sex differences in intensity of emotional experience: A social role interpretation // Journal of Personality and Social Psychology. Vol 65(5), 1010-1022
178. Gruber T, Müller MM, Keil A, Elbert T. (1999) Selective visual-spatial attention alters induced gamma band responses in the human EEG // Clin Neurophysiol. 110(12):2074-85.
179. Gruber T, Tsivilis D, Montaldi D, Muller MM. (2004) Induced gamma band responses: an early marker of memoiy encoding and retrieval // Neuroreport. 15(11):1837-41.
180. Gruzelier J. (2009) A theory of alpha/theta neurofeedback, creative performance enhancement, long distance functional connectivity and psychological integration// Cognitive Processing, Volume 10, Supplement 1
181. Giintekin B., Basar E. Emotional face expressions are differentiated with brain oscillations // Int. J. Psychophysiol., 2007a, V. 64, P. 91-100.
182. Giintekin B, Ba§ar E. (2007b) Gender differences influence brain's beta oscillatory responses in recognition of facial expressions. // Neurosci Lett. 424(2):94-9.
183. Giintekin B., Ba§ar E. Facial affect manifested by multiple oscillations // Int. J. Psychophysiol., 2009, V. 71, P. 31-36.
184. Gur RC, Mozley LH, Mozley PD, Resnick SM, Karp JS, Alavi A, Arnold SE, Gur RE. (1995) Sex differences in regional cerebral glucose metabolism during a resting state. Science 267: 528-531
185. Gusnard D, Akbudak E, Shulman G, Raichle M. (2001) Medial prefrontal cortex and self-referential mental activity: relation to a default mode of brain function. PNAS; 98:4259-64.
186. Guyton, A.C. (1976). Organ physiology: structure and function of the nervous system. London, Saunders.
187. Hadjikhani N, Kveraga K, Naik P, Ahlfors SP (2009). "Early (M170) activation of face-specific cortex by face-like objects". Neuroreport 20: 403.
188. Halgren E., Raij T., Marinlcovic K., Jousmaki V., Hari R. Cognitive response profile of the human fusiform face area as determined by MEG // Cereb. Cortex., 2000, V. 10, P. 69-81.
189. Halit H., de Haan M., Johnson M.H. Modulation of event-related potentials by prototypical and atypical faces // Neuroreport, 2000, V. 11, P. 1871-1875.
190. Hall, J. A. (1978) Gender effects in decoding nonverbal cues I I Psychological Bulletin. Vol 85(4), 845-857
191. Hampson, E., van Anders, S.M., Mullin, L.I. (2006). A female advantage in the recognition of emotional facial expressions: test of an evolutionary hypothesis. Evolution and Human,Behavior, 27, 401-416.
192. Hannah A, Lim BT, Ayers KM. (2009) Emotional intelligence and clinical interview performance oLdental students. J Dent Educ. 73(9): 1107-17.
193. Hardin MG, Mandell D, Mueller SC, Dahl RE, Pine DS, Ernst M. (2009) Inhibitory control in anxious and healthy adolescents is modulated by incentive and incidental affective stimuli // J Child Psychol Psychiatry. 50(12): 1550-8.
194. Hari R., Salmelin R., Makela J.P., Salenius S., Helle M., Magnetoencephalographic cortical rhythms // International Journal of Psychophysiology, 1997, V. 26, P. 51-62.
195. Hariri A, Mattay V, Tessitore A, Fera F, Weinberger D (2003) Neocortical modulation of the amygdala response to fearful stimuli. Biol Psychiatry 53:494 -501.
196. Harmony T, FernaAndez T, Silva J, et al (1996) EEG delta activity: an indicator of attention to internal processing during performance of mental tasks. Int J Psychophysiol 24:161-171.
197. Hassett, JM, Siebert, ER, Wallen K (2008) Sex differences in rhesus monkey toy preferences parallel those of children // Hormones and behavior Volume 54, Issue 3, Pages 359-364
198. Hayashi H., Iijima S., Sugita Y. Appearance of frontal midline theta rhythm during sleep and its relation to mental activity // Electroencephalography and Clinical Neurophysiology, 1986, V. 66, P. 66-70.
199. Haxby J.V., Hoffman E.A., Gobbini M.I. (2000) The distributed human neural system for face perception // Trends. Cognit. Sci., V. 4, №6, P. 223-233.
200. Haxby J.V., Hoffman E.A., Gobbini M.I. (2002) Human neural systems for face recognition and social communication // Biol. Psychiatry, V. 51, №1, P. 59-67.
201. Haxby JV, Horwitz B, Ungerleider LG, Maisog JM, Pietrini P, Grady CL. (1994) The functional organization of human extrastriate cortex: a PET-rCBF study of selective attention to faces and locations. // J Neurosci. 14(11 Pt l):6336-53.
202. Heath, R.G., (1972) Pleasure and brain activity in men. // Journal of Nervous and Mental Disease 154, 3-18.
203. Heilman KM, Bowers D, Valenstein E (1985) Emotional disorders associated with neurological diseases. In Heilman KM, Valenstein E (Eds.), Clinical neuropsychology (pp. 377-402). New York: Oxford University Press.
204. Heisz J.J., Waiter S., Shedden J.M. Automatic face identity encoding at the N170 // Vis. Res., 2006, V. 46, P. 4604-4614.
205. Heller HC (1979) Hibernation: neural aspects // Annual review of physiology, Vol. 41: 305-321
206. Henson R.N., Goshen-Gottstein Y., Ganel T., Otten L.J., Quayle A., Rugg M.D Electrophysiological and haemodynamic correlates of face perception, recognition and priming // Cereb. Cortex, 2003, V. 13, № 7, P. 793-805.
207. Herrmann M.J., Ehlis A.C., Ellgring H., Fallgatter A.J. Early stages (PI00) of face perception in humans as measured with event-related potentials (ERPs) // J. Neural. Transm., 2005, V. 112, P. 1073-1081.
208. Herrmann CS., Mecklinger A. (2001) Gamma activity in human EEG is related to highspeed memory comparisons during object selective attention // Visual Cognition, Volume 8, Issue 3-5, pages 593-608
209. Herning RI, Jones RT, Hooker WD, Mendelson J, Blackwell L (1985) Cocaine increases EEG beta: A replication and extension of Hans Berger'shistoric experiments // Electroencephalography and Clinical Neurophysiology, Volume 60, Issue 6, Pages 470-477
210. Hess N., Hagen E. (2006) Sex differences in indirect aggression: Psychological evidence from young adults // 27(3), pp 231-245
211. Hoffman ML. (1977) Sex differences in empathy and related behaviors. Psychol Bull. 84(4):712-22.
212. Hoffman L.D., Polich J. EEG, ERPs and food consumption // Biological Psychology, 1998, V. 48, P. 139-151.
213. Holm S (1979) A simple sequentially rejective multiple test procedure. Scandinavian J Stat 6:65-70.
214. Holsheimer J, Boer J, Lopes da Silva FH, Van Rotterdam A (1982) The double dipole model of theta rhythm generation: Simulation of laminar field potential profiles in dorsal hippocampus of the rat // Brain Research, Volume 235, Issue 1, Pages 31-50.
215. Hsu B, Kling A, Kessler C, Knapke K, Diefenbach P, Elias JE. (1994) Gender differences in sexual fantasy and behavior in a college population: a ten-year replication // J Sex Marital Ther. 20(2): 103-18.
216. Huffard CL, Caldwell RL, Boneka F. (2010) Male-male and malefemale aggression may influence mating associations in wild octopuses (Abdopus aculeatus) // J Comp Psychol.; 124(l):38-46.
217. Hughdal K, Iversen PM, Johnson BJ. (1993) Laterality for facial expressions: Does the sex of the subject interact with the sex of the stimulus face? Cortex 29: 325-331.
218. Hummel F., Andres F., Altenmuller E., Dichgans J., Gerloff C. Inhibitory control of acquired motor programmes in the human brain // Brain, 2002, V. 125, P. 404-420.
219. Husain M, Nachev P (2007) Space and the parietal cortex. Trends Cogn Sci 11:30-36.
220. Hutcherson CA, Goldin P, Ochsner K, Gabrieli J, Feldman Barrett L, Gross J. (2005) Attention and emotion: does rating emotion alter neural responses to amusing and sad films? Neurolmage; 27:656-68.
221. Hwang G., Jacobs J., Geller A., Danker J., Sekuler R., Kahana M.J. EEG correlates of verbal and nonverbal working memory // Behavior and Brain Functions, 2005, V. 1, P. 1-20.
222. Hyde JS, Linn MC (1988) Gender differences in verbal ability: A metha-analysis // Psychologica Bulettin, 104, pp 53-69.
223. Hyllienmark L, Maltez J, Dandenell A, Ludvigsson J, Brismar T. (2005) EEG abnormalities with and without relation to severe hypoglycaemia in adolescents with type 1 diabetes // Diabetologia. 48(3):412-9.
224. Iidaka T, Omori M, Murata T, Kosaka H, Yonekura Y, Okada T, Sadato N. (2001) Neural interaction of the amygdala with the prefrontal and temporal cortices in the processing of facial expressions as revealed by fMRI. J Cogn Neurosci; 13:1035-47.
225. Intriligator, J., Polich, J., 1995. On the relationship between EEG and ERP variability. International Journal of Psychophysiology 20, 59-74.
226. Ishai A (2007) Sex, beauty and the orbitofrontal cortex // International Journal of Psychophysiology, 63(2), pp 181-185
227. Itier R.J., Latinus M., Taylor M.J. (2006) Face, eye and object early processing: what is the face specificity? //Neuroimage, V. 29, P. 667-676.
228. Itier R.J., Taylor M.J. (2002) Inversion and Contrast Polarity Reversal Affect both Encoding and Recognition Processes of Unfamiliar Faces: A Repetition Study Using ERPs // Neurolmage, 15(2), 353-372
229. Itier R.J., Taylor M.J. (2004) Face recognition memory and configural processing: a developmental ERP study using upright, inverted, and contrast-reversed faces // J. Cogn. Neurosci., V. 16, P. 487-502.
230. Jacobs J, Kahana MJ, Ekstrom AD, Fried I. (2007) Brain oscillations control timing of single-neuron activity in humans // J Neurosci.; 27(14):3839-44.
231. Jasper (1958) The ten-twenty electrode system of the International Federation // Electroencephalogr Clin Neurophysiol, 10:371-375
232. Jausovec N, Jausovec K. (2005) Differences in induced gamma and upper alpha oscillations in the human brain related to verbal/performance and emotional intelligence // Int J Psychophysiol. 56(3):223-35.
233. Jensen A. R., Rowher W. D. (1966) The Stroop color-word test: a review. // Acta Psychologica, Vol. 25, pp. 36-93.
234. Jensen O., Gelfand J., Kounios J., Lisman J.E. (2002) Oscillations in the alpha band (9-12 Hz) increase with memory load during retention in a short-term memory task // Cerebral Cortex, V. 12, P. 877-882.
235. Jensen O, Lisman JE (2005) Hippocampal sequence-encoding driven by a cortical multi-item working memory buffer. Trends Neurosci 28:67-72.
236. Jensen O. Reading the hippocampal code by theta phase-locking // Trends in Cognitive Science, 2005, V. 9, P. 551-553.
237. Jensen O, Tesche CD. (2002) Frontal theta activity in humans increases with memory load in a working memory task // Eur J Neurosci., 15(8):1395-9.
238. Jurysta F, van de Borne P, Lanquart JP, Migeotte PF, Degaute JP, Dumont M, Linkowski P. (2005) Progressive aging does not alter the interaction between autonomic cardiac activity and delta EEG power. // Clin Neurophysiol. 116(4):871-7
239. Kabuto M., Kageyama T., Nitta H. EEG power spectrum changes due to listening to pleasant music and their relation to relaxation effects // Nippon Eiseigaku Zasshi, 1993, V. 48, P. 807-818.
240. Kahana M.J., Sekuler R., Caplan J.B., Kirschen M., Madsen J.R. (1999) Human theta oscillations exhibit task dependence during virtual maze navigation, Nature, 399: 781-784.
241. Kahana MJ, Seelig D, Madsen JR (2001) Theta returns. Curr Opin Neurobiol 11:739-744.
242. KamarajanC, Rangaswamy M, Ghorlian DB, Manz N, Tang Y, Pandey AK, Roopesh BN, Stimus AT, Porjesz B (2008) Theta oscillations during the processing of monetary loss and gain: A perspective on gender and impulsivity. Brain Res 1235:45-62.
243. Kamio Y, Wolf J, Fein D. (2006)'Automatic processing of emotional faces in high-functioning pervasive developmental disorders: An affective priming study // J Autism Dev Disord. 36(2): 155-67.
244. Kamondi A., Acsâdy L., Wang X. J., Buzsâki G. (1998). Theta oscillations in somata and dendrites of hippocampal pyramidal cells in vivo: activity-dependent phase-precession of action potentials. Hippocampus 8, 244261
245. Kano M, Fukudo S, Gyoba J, Kamachi M, Tagawa M, Mochizuki H, Itoh M, Hongo M, Yanai K (2003) Specific brain processing of facial expressions in people with alexithymia: an H2 150-PET study. Brain 126:1474-1484
246. Kanwisher N., McDermott J., Chun M.M. (1997) The fusiform face area: a module in human extrastriate cortex specialized for face perception // J. Neurosci., V. 17, № 11, P. 4302-4311.
247. Karrasch M., Laine M., Rapinoja P., Krause C.M. (2004) Effects of normal aging on event-related desynchronization/synchronization during a memory task in humans. Neuroscience Letters, 366 (1): 18-23.
248. Katon W, Rutter C, Simon G, Lin E, Ludman E, Ciechanowski P, Kinder L, Young B, Von Korff M. (2005) The association of comorbid depression with mortality in patients with type 2 diabetes. Diabetes Care; 28:2668 -72.
249. Keightley ML, Winocur G, Graham SJ, Mayberg HS, Hevenor SJ, Grady CL. (2003) An fMRI study investigating cognitive modulation of brain regionsassociated with emotional processing of visual stimuli // Neuropsychologia. 41(5):585-96.
250. Keil A., Muller M.M., Gruber T., Wienbruch C., Stolarova M., Elbert T. Effects of emotional arousal in the cerebral hemispheres: a study of oscillatory brain activity and event-related potentials // Clin. Neurophysiol., 2001, V. 112, P. 2057-2068.
251. Kemp AH, Silberstein RB, Armstrong SM, Nathan PJ. (2004) Gender differences in the cortical electrophysiological processing of visual emotional stimuli //Neuroimage. 21(2):632-46.
252. Kesler-West M.L., Andersen A.H., Smith C.D., Avison M.J., Davis C.E., Kryscio R.J., Blonder L.X. Neural substrates of facial emotion processing using fMRI // Cogn. Brain Res., 2001, V. 11, P. 213-226.
253. Kilpatrick LA, Zald DH, Pardo JV, Cahill LF. (2006) Sex-related differences in amygdala functional connectivity during resting conditions // Neuroimage. 30(2):452-61.
254. Kindt M, Brosschot JF (1997) Phobia-related cognitive bias for pictorial and linguistic stimuli. J Abnormal Psychol 106:644-648.
255. King LA, Emmons RA. (1990) Conflict over emotional expression: psychological and physical correlates // J Pers Soc Psychol. 58(5):864-77.
256. Kirk IJ. (1998) Frequency modulation of hippocampal theta by the supramammillary nucleus, and other hypothalamo-hippocampal interactions: mechanisms and functional implications // Neurosci Biobehav Rev. 22(2):291-302.
257. Kirk I.J., Mackay J.C. (2003) The role of theta-range oscillations in synchronising and integrating activity in distributed mnemonic networks // Cortex, V. 39, P. 993-1008.
258. Klimesch, W. (1999). EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Research Review, 29, 169-195.
259. Klimesch W., Doppelmayr M., Russegger H., Pachinger T., Schwaiger J. (1998) Induced alpha band power changes in the human EEG and attention // Neuroscience Letters, Volume 244, Issue 2, Pages 73-76
260. Klimesch W., Sauseng P., Hanslmayr S. (2007) EEG alpha oscillations: The inhibition-timing hypothesis. Brain Research Reviews, 53 (1): 63-88.
261. Klimesch W. Memory processes, brain oscillations and EEG synchronization // International Journal of Psychophysiology, 1996, V. 24, P. 61-100.
262. Klimesch W. EEG-alpha rhythms and memory processes // International Journal of Psychophysiology, 1997, V. 26, P. 319-340.
263. KlimeschW. EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis,// Brain Research Review, 1999, V. 29, P. 169-195.
264. Klimesch W (1996) Memory processes, brain oscillations and EEG synchronization. Int JPsychophysioL24:61-100.
265. Klimesch W (1997) EEG-alpha rhythms and memory processes. Int J Psychophysiol 26:319-340.
266. Klimesch W (1999) EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res Rev 29:169-195.
267. Klimesch W., Doppelmayr M., Schwaiger J., Auinger P., Winkler T. 'Paradoxical' alpha synchronization in a memory task // Brain Research and Cognitive Brain Research, 1999, V. 7, P. 493-501.
268. Klimesch W., Doppelmayr M., Pachinger T., Russegger H. (1997) Event-related desynchronization in the alpha band and the processing of semantic information // Cognitive Brain Research, Volume 6, Issue 2, Pages 83-94
269. Klimesch .W., Sauseng Pi, Hanslmayr S. EEG alpha oscillations: The inhibition-timing hypothesis // Brain Res. Rev., 2007, V. 53, P. 63-88.
270. Klimesch W., Doppelmayr M., Schwaiger J., Auinger P., Winkler T. 'Paradoxical' alpha synchronization in a memory task // Brain Research and Cognitive Brain Research, 1999, V. 7, P. 493-501.
271. Klimesch W., Doppelmayr M., Rohm D., Pollhuber D., Stadler W. Simultaneous desynchronization and synchronization of different alpha responses in the human electroencephalograph: a neglected paradox // Neuroscience Letters, 2000, V. 284, P. 97-100.
272. Klinger E, Gregoire KC, Barta SG. (1973) Physiological con-elates of mental activity: eye movements, alpha, and heart rate during imagining, suppression, concentration, search, and choice // Psychophysiology. 10(5): 471-477.
273. Kluver H, Bucy P. (1937) "Psychic blindness" and other symptoms following bilateral temporal lobectomy in rhesus monkeys. Am J Physiol; 119:352-3.
274. Knyazev GG (2007) Motivation emotion and their inhibitory control mirrored in brain oscillations. Neurosci Biobeh Rev 31:377-395.
275. Knyazev GG, Slobodskoy-Plusnin JY (2007) Behavioural approach system as a moderator of emotional arousal elicited by reward and punishment cues. Pers Ind Diff 42:49-59.
276. Knyazev GG, Bocharov AV, Levin EA, Savostyanov AN, Slobodskoy-Plusnin JY (2008a) Anxiety and oscillatory responses to emotional facial expressions. Brain Res 1227:174-188.
277. Knyazev, G.G., Bocharov, A.V., Slobodskaya, H.R., Ryabichenko, T.I. (2008b). Personality-linked biases in perception of emotional facial expressions. Personality and Individual Differences, 44, 5, 1093-1104.
278. Knyazev, G.G., Slobodskoy-Plusnin J.Yu., Savostyanov, A.N., Levin, E.A., Bocharov, A.V., (2008c). Reciprocal relationships between oscillatory systems of the brain. Journal of Higher Nervous Activity, 58, 5, 576-583.
279. Knyazev, G.G., Slobodskoj-Plusnin, J.Yu. (2009). Substance use underlying behavior: investigation of theta and high frequency oscillations in emotionally relevant situations. Clinical EEG and Neuroscience, 40(1), 1-4.
280. Knyazev, G.G., Bocharov, A.V., Slobodskoj-Plusnin, J.Y. (2009a). Hostility- and gender-related differences in oscillatory responses to emotional facial expressions. Aggressive Behavior, 35, 502-513.
281. Knyazev, G.G., Slobodskoj-Plusnin, J.Y., Bocharov, A.V. (2009b). Event-related delta and theta synchronization during explicit and implicit emotion processing. Neuroscience, 164(4), 1588-1600.
282. Knyazev, G.G., Slobodskoj-Plusnin, J.Y., Bocharov, A.V. (2009c). Biological underpinnings of three personality types. Psychological Questions, 5, 82-91.
283. Knyazev, G.G., Savostyanov A.N., Levin E.A., Slobodskoj-Plusnin, J.Y., Bocharov, A.V. (2009d). EEG correlates of anxiety. Bulletin of Siberian Branch of Russian Academy of Medical Sciences, 135(1), 74-80.
284. Knyazev GG, Slobodskoi-Plyusnin YY, Savost'yanov AN, Levin EA, Bocharov AV. (2010) Reciprocal Relationships Between the Oscillatory Systems of the Brain. Neurosci Behav Physiol. 40(1), 29-35.
285. Knyazev, G.G., Slobodskoy-Plusnin, J.Y., Bocharov, A.V. (in press). Gender differences in processing of emotional facial expressions. Emotion.
286. Kocsis B, Vertes RP (1994) Characterization of neurons of the supramammillary nucleus and mammillary body that discharge rhythmically with the hippocampal theta rhythm in the rat // Journal of Neuroscience, Vol 14, 7040-7052.
287. Kocsis B., Di Prisco G.V., Vertes R.P., (2001) Theta synchronization in the limbic system: the role of the Gudden's tegmental nuclei // European Journal of Neuroscience, Vol. 13, pp. 381-388,
288. Kocsis B., Bragin A., Buzsaki G. (1999) Interdependence of multiple theta generators in the hippocampus: a partial coherence analysis. J. Neurosci. 19, 6200-6212
289. Kolassa IT, Miltner WH (2006) Psychophysiological correlates of face processing in social phobia. Brain Res 1118:130-141.
290. Korb AS, Cook IA, Hunter AM, Leuchter AF. (2008) Brain electrical source differences between depressed subjects and healthy controls // Brain Topogr. 21(2): 138-46.
291. Kostandov EA, Kurova NS, Cheremushkin EA, Petrenko NE, Ashkinazi ML. (2010) Synchronization of EEG theta and alpha rhythms in an unconscious set to the perception of an emotional facial expression // Neurosci Behav Physiol. 40(2): 197-204.
292. Krause C.M., Lang A.H., Laine M., Kuusisto M., Porn B. Event-related EEG desynchronization and synchronization during an auditory memory task // Electroencephalography and Clinical Neurophysiology, 1996, V. 98, P. 319326
293. Krause C.M., Porn B., Lang A.H., Laine M. Relative alpha desynchronization and synchronization during speech perception // Cognitive Brain Research, 1997, V. 5, P. 295-299.
294. Krause C.M., Astrom T., Karrasch M., Laine M., Sillanmaki L. Cortical activation related to auditory semantic matching of concrete versus abstract words // Clinical Neurophysiology, 1999, V. 110, P. 1371-1377.
295. Krause C.M., Sillanmaki L., Koivisto M., Saarela C., Haggqvist A., Laine M., Hamalainen H. (2000b) The effects of memory load on event-related
296. EEG desynchronization and synchronization. Clinical neurophysiology, 111 (11): 2071-2078.
297. Krause C.M., Salminen P.A., Sillanmaki L., Holopainen I.E. (2001) Event-related desynchronization and synchronization during a memory task in children. Clinical neurophysiology, 112 (12): 2233-2240
298. Kring AM, Gordon AH. (1998) Sex differences in emotion: Expression, experience, and physiology. J Pers Soc Psychol 74: 686-703.
299. Kroenke, K., Spitzer, R.L. (1998). Gender differences in the reporting of physical and somatoform symptoms. Psychosomatic Medicine, 60, 150-155.
300. Krolak-Salmon P, Henaff MA, Bertrand O, Vighetto A, Mauguiere F. (2006) Part II: Recognising facial expressions // Rev Neurol (Paris); 162(11):1047-58.
301. Krolak-Salmon P, Fischer C, Vighetto A, Mauguiere F. (2001)v Processing of facial emotional expression: spatio-temporal data as assessed byscalp event-related potentials. Eur J Neurosci. 13(5):987-94.
302. Krueger F, Barbey A K., McCabe K, Strenziok M, Zamboni G, Solomon J, Raymont V, Grafman J (2009) The neural bases of key competencies of emotional intelligence // PNAS vol. 106 no. 52, pp 22486-91
303. Kuebli, J., Fivush, R. (1992). Gender differences in parent-child conversations about past emotions. Sex Roles, 27, 683.
304. Kumpfer, K.L., Smith, P., Summerhays, J.F. (2008). A wakeup call to the prevention field: are prevention programs for substance use effective for girls? Substance Use and Misuse, 43, 978-1001.
305. Kubzansky L, Kawachi I, Weiss S, Sparrow D. (1998) Anxiety and coronary heart disease: a synthesis of epidemiological, psychological, and experimental evidence. Ann Behav Med; 20:47-58.
306. Ladwig, K.H., Marten-Mittag, B., Formanek, B., Dammann, G. (2000). Gender differences of symptom reporting and medical health care utilization in the German population. European Journal of Epidemiology, 16, 511-518.
307. LaFrance M, Banaji M, (1992) Toward a Reconsideration of the genderemotion relationship // in H.S. Clark Emotion and social behavior. Newbury Park: Sage; pp. 178-201
308. Lahelma, E., Martikainen, P., Rahkonen, O., Silventoinen, K. (1999). Gender differences in illhealth in Finland: patterns magnitude and change. Social Science and Medicine, 48, 7-19.
309. Lamb K, Gallagher K, McColl R, Mathews D, Querry R, Williamson JW (2007). Exercise-induced decrease in insular cortex rCBF during postexercise hypotension // Med Sci Sports Exerc 39 (4): 672-9.
310. Lambertz FI, Tries HP, Stein T, Lethen H. (1999) Noninvasive assessment of coronary flow reserve with transthoracic signal-enhanced Doppler echocardiography. // J Am Soc Echocardiogr. 12(3): 186-95.
311. Lambertz M., Langhorst P. Simultaneous changes of rhythmic organization in brainstem neurons, respiration, cardiovascular system and EEG between 0.05 Hz and 0.5 Hz // Journal of the Autonomic Nervous System, 1998, V. 68, P. 58-77.
312. Lane R, Fink G, Chua P, Dolan R. (1997) Neural activation during selective attention to subjective emotional responses. Neuroreport; 8: 3969-72.
313. Lane R, Quinlan D, Schwartz G, Walker P, Zeitlin S. (1990) The levels of emotional awareness scale: a cognitive-developmental measure of emotion. J Pers Assess; 55:124 -34.
314. Lane R, Reiman E, Axelrod B, Yun L, Holmes A, Schwartz G. (1998) Neural correlates of levels of emotional awareness. Evidence of an interactionbetween emotion and attention in the anterior cingulate cortex. J Cogn Neurosci; 10:525-35.
315. Lane RD (2008) Neural substrates of implicit and explicit emotional processes: A unifying framework for psychosomatic medicine. Psychosom med 70:214-231.
316. Lang M, Lang W, Diekmann V, Kornhuber HH. (1987) The frontal theta rhythm indicating motor and cognitive learning. // Electroencephalogr Clin Neurophysiol Suppl. 40:322-7.
317. Langlois, J.H., Downs, A.C. (1990). Mothers fathers and peers as socialization agents of sex-typed play behaviors in young children. Child Development, 51, 1237-1247.
318. LeDoux JE. (1996) The Emotional Brain: The Mysterious Underpinnings of Emotional Life. New York: Simon & Schuster.
319. LeDoux JE, Thompson ME, Iadecola C, Tucker LW, Reis DJ. (1983) Local cerebral blood flow increases during auditory and emotional processing in the conscious rat // Science. 221(4610):576-8.
320. LeDoux J. (2007) The amygdala. // Curr Biol. 17(20):R868-74. Review.
321. LeDoux JE, Färb CR, Romanski LM. (1991) Overlapping projections to the amygdala and striatum from auditory processing areas of the thalamus and cortex. //Neurosci Lett. 134(l):139-44.
322. Lee TM, Liu HL, Chan CC, Fang SY, Gao JH. (2005) Neural activities associated with emotion recognition observed in men and women. //Mol Psychiatry. 10(5):450-5.
323. Leppanen, J.M., Hietanen, J.K. (2001). Emotion recognition and social adjustment in school-aged girls and boys. Scandinavian Journal of Psychology, 42, 429-435.
324. Leppanen, J.M., Moulson, M.C., Vogel-Farley, V.K., Nelson, C.A. (2007). An ERP study of emotional face processing in the adult and infant brain. Child Development, 78, 232-245.
325. Leung L.S., Yim C.Y. Rhythmic delta-frequency activities in the nucleus accumbens of anesthetized and freely moving rats // Canadian Journal of Physiology and Pharmacology, 1993, V. 71, P. 311-320.
326. Leventhal H, Mace W. (1970) The effect of laughter on evaluation of a slapstick movie // J Pers. 38(l):16-30.
327. Leventhal AM, Kahler CW (2009) Measuring socioaffective processing with the Emotional Interference Gender Identification Task. Motiv Emot (in press).
328. Leveroni C.L., Seidenberg M., Mayer A.R., Mead L.A., Binder J.R., Rao S.M. Neural systems underlying the recognition of familiar and newly learned faces // J. Neurosci., 2000, V. 20, P. 878-886.
329. Li J, Liu J, Liang J, Zhang H, Zhao J, Rieth CA, Huber DE, Li W, Shi G, Ai L, Tian J, Lee K. (2010) Effective connectivities of cortical regions for top-down face processing: A dynamic causal modeling study // Brain Res. Epub ahead of print.
330. Libet, B. (2003). Timing of conscious experience: reply to the 2002 commentaries on Libet's findings. Consciousness and Cognition, 12, 321-331.
331. Libet B (2006) Reflections on the interaction of the mind and brain. Prog Neurobiol 78:322-326.
332. Libet B, Alberts WW, Wright E, Feinstein BW (1967) Responses of human somatosensory cortex to stimuli below threshold for conscious sensation. Science 158, 1597-1600.
333. Liu J., Harris A., Kanwisher N. Stages of processing in face perception: an MEG study // Nat. Neurosci., 2002, V. 5, P. 910-916.
334. Liu L, loannides AA, Streit M (1999) Single trial analysis of neurophysiological correlates of the recognition of complex objects and facial expressions of emotion // Brain Topography, 11(4): 291-303.
335. Lopes da Silva F.H., Storm van Leeuwen W. The cortical source of the alpha rhythm // Neuroscience Letters, 1977, V. 6, P. 237-241.
336. Lorente de No, R. Studies of the structure of the cerebral cortex // J Psychol. U. Neurol., 1933, V. 45, P. 420-438.
337. Maccoby EE, Jacklin CN. (1980) Sex differences in aggression: a rejoinder and reprise // Child Dev. 51(4):964-80.
338. Macintyre, S., Ford, G., Hunt, K. (1999). Do women 'over-report' morbidity? Men's and women's responses to structured prompting on a standard question on long standing illness. Social Science and Medicine, 48, 89-98.
339. Maclean RR, Datta S. (2007) The relationship between anxiety and sleep-wake behavior after stressor exposure in the rat // Brain Res. 2007 Aug 20;1164:72-80.
340. MacLean P. (1949) Psychosomatic disease and the "visceral brain": recent developments bearing on the Papez theory of emotion. Psychosom Med; 11:338-53.
341. MacLean P. (1952) Some psychiatric implications of physiological studies on frontotemporal portion of limbic system (visceral brain). Electroencephalogr Clin Neurophysiol Suppl; 4:407-18
342. MacLean, P.D. (1985), Brain evolution relating to family, play, and the separation call. Archive of Genetic Psychiatry, 42, 405-417.
343. Makeig S. (1993) Auditory Event-Related Dynamics of the EEG Spectrum and Effects of Exposure to Tones // Electroencephalography and Clinical Neurophysiology 86:283-293.
344. Marinkovic K, Halgren E (1998) Human brain potentials related to the emotional expression, repetition, and gender of faces // Psychobiology, 26 (4), 348-356
345. Marsh AA., Adams Jr RB., Kleck RE. (2005a) Why Do Fear and Anger Look the Way They Do? Form and Social Function in Facial Expressions // Personality and Social Psychology Bulletin, Vol. 31, No. 1, 73-86.
346. Marsh, AA., Ambady, N, Kleck, RE. (2005b) The Effects of Fear and Anger Facial Expressions on Approach- and Avoidance-Related Behaviors. // Emotion. Vol 5(1), 119-124
347. Matthews G., Amelang M. (1993) Extraversión, arousal theory and performance: a study of individual differences in the EEG // Personality and Individual Differences, V. 14, P. 347-364.
348. Mayer JD, DiPaolo M, Salovey P (1990) Perceiving affective content in ambiguous visual stimuli: A component of emotional intelligence. J Pers Assess 54:772-781.
349. Mayer JD, Salovey P (1997) What is emotional intelligence? In Salovey P, Sluyter D (eds) Emotional Development and Emotional Intelligence: Educational Implications. Basic Books, New York.
350. McCarthy G., Puce A., Belger A., Allison T. Electrophysiological studies of human face perception. II: Response properties of face-specificpotentials generated in occipitotemporal cortex // Cereb. Cortex, 1999, V. 9, P. 431-444.
351. McCarthy G (1999) Physiological studies of face processing in humans. In: Gazzaniga MS (Ed.) The New Cognitive Neurosciences. MIT Press: Cambridge, MA, pp. 393-410.
352. McConatha JT, Leone FM, Armstrong JM. 1997. Emotional control in adulthood. Psychol Rep 80: 499-507.
353. McEvoy L.K., Smith M.E., Gevins A. (2000) Test-retest reliability of cognitive EEG, Clinical Neurophysiology, 111: 457-463.
354. McEvoy L.K., Pellouchoud E., Smith M.E., Gevins A. (2001) Neurophysiological signals of working memory in normal aging. Brain research. Cognitive brain research, 11 (3): 363-376.
355. McGinness D, Pribram KH (1979) The origins of sensory bias in the development of gender differences in perception and cognition // In: Bortner, M (Ed). Cognitive Growth and Development: Essays in Honor of Herbert Birch Brunner/Mazel
356. McKenna F, Sharma D (1995) Intrusive cognitions: An investigation of the emotional Stroop task. J Exp Psychol 21 -.1595-1607.
357. Meador KJ, Ray PG, Day L, Loring DW (2000) Train duration effects on perception: sensory deficit, neglect, and cerebral lateralization. J Clin Neurophysiol 17:406-413.
358. Mesulam M, Mufson E (1982) Insula of the old world monkey. Ill: Efferent cortical output and comments on function. J Comp Neurol 212:38-52.
359. Michel C.M., Lehmann D., Henggeler B. Localization of the sources EEG delta, theta, alpha and beta frequency bands using the FFT dipoleapproximation // Electroencephalography and Clinical Neurophysiology, 1992, V. 82, P. 38-44.
360. Michel C.M., Henggeler B., Brandéis D. (1993) Localization of sources of brain alpha/theta/delta activity and the influence of the mode of spontaneous mentation // Physiological Measurement, V. 14, P. 21-26.
361. Miller R. Cortico-Hippocampal Intemationalerplay and the Representation of Contexts in the Brain. Springer, Berlin-Heidelberg-New < York, 1991.
362. Milner AD, Goodale MA (1995) The Visual Brain in Action. Oxford University Press, Oxford.
363. Milner AD, Goodale MA. (2008) Two visual systems re-viewed // Neuropsychologia. 46(3):774-85.
364. Mitchell DJ, McNaughton N, Flanagan D, Kirk IJ (2008) Frontal-midline theta from the perspective of hippocampal "theta". Prog Neurobiol 86:156-185.
365. Mitchell SJ, Ranck JB (1980) Generation of theta rhythm in medial entorhinal cortex of freely moving rats // Brain Research, Volume 189, Issue 1, Pages 49-66
366. Mizuki Y., Masotoshi T., Isozaki H., Nishijima H., Inanaga K. Periodic appearance of theta rhythm in the frontal midline area during performance of a mental task // Electroencephalography and Clinical Neurophysiology, 1980, V. 49, P. 345-351.
367. Moita MA, Rosis S, Zhou Y, LeDoux JE, Blair HT (2003) Hippocampal place cells acquire location-specific responses to the conditioned stimulus during auditory fear conditioning. Neuron 37:372-374.
368. Morgan MA, Romanski LM, LeDoux JE. (1993) Extinction of emotional learning: contribution of medial prefrontal cortex // Neurosci Lett. 163(1): 10913.
369. Morison, R. S., Bassett, D. L. Electrical activity of the thalamus and basal ganglia in decorticate cats // Journal of Neurophysiology, 1945, V. 8, P. 309-314
370. Mormann F, Osterhage H, Andrzejak RG, Weber B, Fernández G, Fell J, Elger CE, Lehnertz K. (2008) Independent delta/theta rhythms in the human hippocampus and entorhinal cortex // Front Hum Neurosci.; 2:3.
371. Morris J.S., Ohman A., Dolan R.J. Conscious and unconscious emotional learning in the human amygdala // Nature, 1998, V. 393, P. 467-470.
372. Morris J. S., Frith C. D., Perrett D. I., Rowland D., Young A. W., Calder A. J. Dolan R. J. (1996) A differential neural response in the human amygdala to fearful and happy facial expressions // Nature 383,812-815
373. Mosovich, A., Taliaferro, A., (1954) Studies on EEG and sex function orgasm. // Diseases of the Nervous System 15, 218-220.
374. Moscovitch M, Winocur G, Behrmann M (1997). "What is special about face recognition? Nineteen experiments on a person with visual object agnosia and dyslexia but normal face recognition". J Cogn Neurosci 9: 555-604.
375. Muller M.M., Keil A., Gruber T., Elbert T. Processing of affective pictures modulates right-hemispheric gamma band EEG activity // Clin. Neurophysiol., 1999, Y. 110, P. 1913-1920.
376. Munte T.F., Brack M., Grootheer O., Wieringa B.M., Matzke M., Johannes S. Brain potentials reveal the timing of face identity and expression judgments //Neurosci. Res., 1998, V. 30, P. 25-34.
377. Müller MM, Keil A, Gruber T, Elbert T. (1999) Processing of affective pictures modulates right-hemispheric gamma band EEG activity // Clin Neurophysiol. 110(ll):1913-20.
378. Naidoo S, Pau A. (2008) Emotional intelligence and perceived stress. SADJ. 63(3): 148-51.
379. Najavits LM, Lester KM. (2008) Gender differences in cocaine dependence // Drug Alcohol Depend. 97(1-2): 190-4.
380. Neubauer A. C.5 Fink A., Schrausser D. G. (2002) Intelligence and neural efficiency: The influence of task content and sex the brain-IQ relationship. Intelligence, 30: 515-536.
381. Newcombe, F., de Haan, E.H.F., Small, M., Hay, D.C. Dissociable deficits after brain injury // Young, Andrew W. (1998). Face and Mind. Oxford: Oxford University Press.
382. Nishitani N (2003) Dynamics of cognitive processing in the human hippocampus by neuromagnetic and neurochemical assessments. Neuroimage 20:561-571.
383. Nowicka, A, Fersten, E (2001) Sex-related differences in interhemispheric transmission time in the human brain // Cognitive Neuroscience and Neuropsychology, 12(18), pp 4171-4175
384. Nunez A, Garcia-Austt E, Buno W Jr. (1987) Intracellular theta-rhythm generation in identified hippocampal pyramids // Brain Res., 416(2):289-300.
385. Nunez P.L. Neocortical dynamics and human EEG rhythms. Oxford University Press, New York, 1995.
386. Nunez P.L. Toward a quantitative description of large-scale neocortical dynamic function and EEG // Behavioral Brain Science, 2000, V. 23, P. 371398.
387. Nunez P.L., Katznelson R.D. Electric Fields of the Brain. Oxford University Press, New York, 1981.
388. Oakes TR., Pizzagalli DA., Hendrick AM., Horras KA., Larson CL., Abercrombie HC., Schaefer SM., Koger JV., Davidson RJ. (2004) Functional Coupling of Simultaneous Electrical and Metabolic Activity in the Human Brain // Human Brain Mapping 21:257-270.
389. O'Doherty J, Winston J, Critchley H, Perrett D, Burt DM, Dolan RJ. (2003) Beauty in a smile: the role of medial orbitofrontal cortex in facial attractiveness //Neuropsychologia. 41(2):147-55.
390. Ochsner K, Bunge S, Gross J, Gabrieli J. (2002) Rethinking feelings: an fMRI study of the cognitive regulation of emotion. J Cogn Neurosci; 14: 1215— 29.
391. Ohman A. (1986) Face the beast and fear the face: animal and social fears as prototypes for evolutionary analyses of emotion. // Psychophysiology. 1986 Mar;23(2): 123-45.
392. Onitilo A, Nietert P, Egede L. (2006) Effect of depression on all-cause mortality in adults with cancer and differential effects by cancer site. Gen Hosp Psychiatry; 28:396-402.
393. Onton J., Delorme A., Makeig S. (2005) Frontal midline EEG dynamics during working memory, Neuroimage, 27 (2): 341-356.
394. Onton J, Makeig S. (2009) High-frequency Broadband Modulations of Electroencephalographic Spectra // Front Hum Neurosci. 23;3:61.
395. Ozgoren M, Ba§ar-Eroglu C, Ba§ar E. (2005) Beta oscillations in face recognition. // Int J Psychophysiol. 2005 Jan;55(l):51-9.
396. Papanicolaou AC, Loring DW, Deutsch G, Eisenberg HM. (1986) Task-related EEG asymmetries: a comparison of alpha blocking and beta enhancement. // Int J Neurosci.30(l-2):81-5.
397. Papc?un G, Krashen S, Terbeek D, Remington R, Harshman R. (1974) Is the left hemisphere specialized for speech, language and-or something else? // J Acoust Soc Am. 55(2):319-27.
398. Papez J. (1937) A proposed mechanism of emotion. Arch Neurol Psychiatry; 38:725-34.
399. Pare P. Role of the basolateral amygdala in memory consolidation // Progress in Neurobiology, 2003, V. 70, P. 409-420.
400. Pare P., Collins D.R. (2000) Neuronal correlates of fear in the lateral amygdala: multiple extracellular recordings in conscious cats // Journal of Neuroscience,, V. 20, P. 2701-2710.
401. Pascual-Marqui RD (2002) Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find Exp Clin Pharmacol 24(Suppl. D):5-12.
402. Patel V, Araya R, de Lima M, Ludermir A, Todd C. (1999) Women, poverty and common mental disorders in four restructuring societies // Soc Sci Med. 49(11):1461-71.
403. Paul ES, Harding EJ, Mendl M. (2005) Measuring emotional processes in animals: the utility of a cognitive approach. // Neurosci Biobehav Rev. 29(3):469-91.
404. Pavlygina R.A., Lyubimova Yu.V., Davydov Y.I. Coherence analysis of the electrical activity of the rabbit brain in the presence of a hunger dominant // Neuroscience and Behavioral Physiology, 1994, V. 24, P. 186-191.
405. Pavuluri MN, Passarotti AM, Harral EM, Sweeney JA. (2009) An fMRI study of the neural correlates of incidental versus directed emotion processing in pediatric bipolar disorder // J Am Acad Child Adolesc Psychiatry. 48(3):308-19.
406. Perlis ML, Merica H, Smith MT, Giles DE. (2001) Beta EEG activity and insomnia. // Sleep Med Rev. 5(5):363-374.
407. Petrides K, Furnham A (2000) Gender Differences in Measured and Self-Estimated Trait Emotional Intelligence // Sex Roles 42 (5-6), 449-461
408. Pfurtscheller G. Induced oscillations in the alpha band: functional meaning // Epilepsia, 2003, V. 12, № 44, P. 2-8
409. Pfurtscheller G., Andrew C. Event-related changes of band power and coherence: methodology and interpretation // Journal of Clinical Neurophysiology, 1999, V. 16, P. 512-519.
410. Pfurtschelle, G., Neuper C., Krausz G. Functional dissociation of lower and upper frequency mu rhythms in relation to voluntary limb movement // Clinical Neurophysiology, 2000, V. 111, P. 1873-1879.
411. Pfurtscheller G., Lopes da Silva F.H. Event-related EEG/MEG synchronization and desynchronization: basic principles // Clinical Neurophysiology, 1999, V. 110, P. 1842-1857.
412. Pfurtscheller G., Aranibar A. (1977) Event-related cortical desynchronization detected by power measurements of scalp EEG // Electroencephalography and Clinical Neurophysiology, Volume 42, Issue 6, Pages 817-826
413. Phan K, Wager T, Taylor S, Liberzon I. (2002) Functional neuroanatomy of emotion: a meta-analysis of emotion activation studies in PET and fMRI. Neuroimage; 16:331-48.
414. Phelps E, O'Connor K, Gatenby J, Gore J, Grillon C, Davis M. (2001) Activation of the left amygdala to a cognitive representation of fear. Nat Neurosci. 4:437-41.
415. Phillips M, Young A, Senior C, Brammer M, Andrew C, Calder A, Bullmore E, Perrett D, Rowland D, Williams S, Gray J, David A. (1997) A specific neural substrate for perceiving facial expressions of disgust. Nature. 389:495-98.
416. Phillips ML, Drevets WC, Rauch SL, Lane R. (2003) Neurobiology of emotion perception II: Implications for major psychiatric disorders // Biol Psychiatry. 1;54(5):515-28.
417. Pisella L, Binkofski F, Lasek K, Toni I, Rossetti Y (2006) No double dissociation between optic ataxia and visual agnosia: Multiple sub-streams for multiple visuo-manual integrations. Neuropsychologia 44:2734-2748.
418. Pizzagalli D.A., Lehmann D., Hendrick A.M., Regard M., Pascual-Marqui R.D., Davidson R.J. (2002) Affective judgments of faces modulateearly activity (approximately 160 ms) within the fusiform gyri // Neuroimage, V. 16, P. 663-677.
419. Pizzagalli DA., Oakes TR., Davidson RJ. (2003) Coupling of theta activity and glucose metabolism in the human rostral anterior cingulate cortex: An EEG/PET study of normal and depressed subjects // Psychophysiology, 40(6): 939-949.
420. Pizzagalli DA, Oakes TR, Davidson RJ (2003) Coupling of theta activity and glucose metabolism in the human rostral anterior cingulate cortex: An EEG/PET study of normal and depressed subjects. Psychophysiol 40:939-949.
421. Posner MI (1994) Attention: the mechanisms of consciousness. Proc Natl Acad Sci USA 91:7398-7403.
422. Potegal M, Archer J. (2004) Sex differences in childhood anger and aggression // Child Adolesc Psychiatr Clin N Am. 13(3):513-28, vi-vii.
423. Pramming S, Thorsteinsson B, Stigsby B, Binder C. (1988) Glycaemic threshold for changes in electroencephalograms during hypoglycaemia in patients with insulin dependent diabetes // Br Med J (Clin Res Ed). 296(6623):665-667.
424. Pressman S, Cohen S. (2005) Does positive affect influence health? Psychol Bull; 131:925-71.
425. Proverbio, A.M., Brignone, V., Matarazzo, S., Del Zotto, M., Zani, A. (2006). Gender and parental status affect the visual cortical response to infant facial expression. Neuropsychologia, 44, 2987-2999.
426. Proverbio, A.M., Zani, A., Adorni, R. (2008) Neural markers of a greater female responsiveness to social stimuli // Child Development, 51:1237-1247
427. Pulvermüller F, Lutzenberger W, Preissl H, Birbaumer N. (1995) Spectral responses in the gamma-band: physiological signs of higher cognitive processes? //Neuroreport. 6(15):2059-64.
428. Raghavachari S., Lisman J.E., Tully M., Madsen J.R., Bromfield E.B., Kahana M.J. (2006) Theta oscillations in human cortex during a working-memory task: evidence for local generators, Journal of neurophysiology, 95 (3): 1630-1638.
429. Rainville P, Duncan G, Price D, Carrier B, Bushnell M. (1997) Pain affect encoded in human anterior cingulate but not somatosensory cortex. Science; 277:968 -71.
430. Ramos-Loyo J, González-Garrido AA, Sánchez-Loyo LM, Medina V, Basar-Eroglu C (2009) Event-related potentials and event-related oscillations during identity and facial emotional processing in schizophrenia. Int J Psychophysiol 71:84-90.
431. Rangaswamy M, Porjesz B, Chorlian DB, Wang K, Jones KA, Bauer LO, Rohrbaugh J, O'Connor SJ, Kuperman S, Reich T, Begleiter H. (2002) Beta power in the EEG of alcoholics. // Biol Psychiatry. 52(8):831-42.
432. Ray, W. J., Cole, H. W. (1985) EEG alpha activity reflects attentional demands, and beta activity reflects emotional and cognitive processes. // Science. Vol 228(4700), 750-752.
433. Ray PG, Meador KJ, Smith JR, Whelan JW, Sittenfeld M, Clifton GL (1999) Physiology of perception: Cortical stimulation and recording in humans. Neurology 52:1044-1049.
434. Ray PG, Meador KJ, Epstein CM, Loring DW, Day LJ (1998) Magnetic stimulation of visual cortex: factors influencing the perception of phosphenes. J Clin Neurophysiol 15:351-357.
435. Reid MS, Prichep LS, Ciplet D, O'Leary S, Tom M, Howard B, Rotrosen J, John ER. (2003) Quantitative electroencephalographic studies of cueinduced cocaine craving. // Clinical Electroencephalography 34, 110-123.
436. Reid, M.S., Flammino, F., Howard, B., Nilsen, D., Leslie, S., Prichep, L.S., (2005) Topographic imaging of quantitative EEG in response to smoked cocaine self-administration-in humans. Neuropsychopharmacology, 1-13
437. Reiman E, Lane R, Ahern G, Schwartz G, Davidson R, Friston K, Yun L, Chen K. (1997) Neuroanatomical correlates of externally and internally generated human emotion. Am J Psychiatry. 154:918—25.
438. Reuter M, Hennig J, Stark R, Walter B, Kirsch P, Schienle A, Vaitl D (2004) Personality and emotion: Test of Gray's personality theory by means of an fMRI study. Behav Neurosci 118:462-469.
439. Rinne T, Alho K, Alku P, Holi M, Sinkkonen J, Virtanen J, Bertrand O, Nââtanen R. (1999) Analysis of speech sounds is left-hemisphere predominant at 100-150ms after sound onset // Neuroreport. 10(5): 1113-7.
440. Rolls ET (2000) The Orbitofrontal Cortex and Reward // Cerebral Cortex, Vol. 10, No. 3, 284-294.
441. Rolls ET (2008) Face processing in different brain areas, and critical band masking // J Neuropsychol. 2(Pt 2):325-60.
442. Rolls ET (2004) The function of orbitofrontal cortex // Brain Cogn. 55(1): 11-29.
443. Roschke, J., Fell, J., 1997. Spectral analysis of P300, generation in depression and schizophrenia. Neuropsychobiology 35, 108-114.
444. Rossetti Y, Pisella L, Vighetto A (2003) Optic ataxia revisited: Visually guided action versus immediate visuomotor control. Exp Brain Res 153:171— 179.
445. Rossion B, de Gelder B, Pourtois G, Guérit JM, Weiskrantz L. (2000) Early extrastriate activity without primary visual cortex in humans. Neurosci Lett 279:25-28.
446. Rotter, N.G., Rotter, G.S. (1988). Sex differences in the encoding and decoding of negative facial emotions. Journal of Nonverbal Behavior, 12, 139145.
447. Sacks, O. (1985). The Man Who Mistook His Wife for a Hat, and Other Clinical Tales. Summit Books
448. Sadato N., Nakamura S., Oohashi T., Nishina E., Fuwamoto Y., Waki A. Neural networks for generation and suppression of alpha rhythm: a PET study //Neuroreport, 1998, V. 9, P. 893-897.
449. Safer MA. (1981) Sex and hemisphere differences in access to codes for processing emotional expressions and faces // J Exp Psychol Gen. 110(1):86-100.
450. Sainsbury RS, Montoya P (1984) The relationship between type 2 theta and behavior. Physiol Behav 33:621-626.
451. Salinas E, Sejnowski TJ (2001) Correlated neuronal activity and the flow of neural information. Nat Rev Neurosci 2:539-550.
452. Salovey P, Mayer JD (1990) Emotional Intelligence. Imagination Cognition Personality 9:185-211.
453. Salovey P, Rothman AJ, Detweiler JB, Steward WT. (2000) Emotional states and physical health // Am Psychol. 55(1): 110-21.
454. Sar V, Akyiiz G, Dogan O. (2007) Prevalence of dissociative disorders among women in the general population // Psychiatry Res. 149(1-3): 169-76.
455. Saul LJ, Davis H (1933) Action currents in the central nervous system // The Journal of Nervous and Mental Disease: Volume 78 Issue 6 - ppg 647
456. Sato W, Aoki S. (2006) Right hemispheric dominance in processing of unconscious negative emotion // Brain Cogn. 62(3):261-6.
457. Schafer R, Popp K, Jorgens S, Lindenberg R, Franz M, Seitz R (2007) Alexithymia-like disorder in right anterior cingulate infarction. Neurocase 13:201-208.
458. Schneider F, Habel U, Kessler C, Salloum JB, Posse S. (2001) Gender differences in regional cerebral activity during sadness. // Hum Brain Mapp. 9(4):226-38.
459. Schirmer A, Zysset S, Kotz SA, Yves von Cramon D (2004) Gender differences in the activation1 of inferior frontal cortex during emotional // Neuroimage Volume 21, Issue 3, Pages 1114-1123
460. Schirmer A, Kotz SA (2003) ERP evidence for a sex-specific Stroop effect in emotional speech // Journal of Cognitive Neuroscience, Vol. 15, No. 8, Pages 1135-1148
461. Schoenbaum G, Roesch MR, Stalnaker TA, Takahashi YK. (2009) A new perspective on the role of the orbitofrontal cortex in adaptive behaviour // NatRevNeurosci. 10(12):885-92.
462. Schulte-Riither M, Markowitsch HJ, Shah NJ, Fink GR, Piefke M. (2008) Gender differences in brain networks supporting empathy // Neuroimage. 42(l):393-403.
463. Schupp HT, Ohman A, Junghofer M, Weike AI, Stockburger J, Hamm AO. (2004) The facilitated processing of threatening faces: an ERP analysis. Emotion. (2): 189-200.
464. Schurmann, M., Basar-Eroglu, C., Kolev, V., Basar, E., 2001. Delta responses and cognitive processing: single-trial evaluations of human visual P300. International Journal of Psychophysiology 39, 229-239.
465. Schutter, D.J.L.G., van Honk, J., 2004. Decoupling of midfrontal deltabeta oscillations after testosterone administration. International // Journal of Psychophysiology 53, 71-73.
466. Schwartz GE, Davidson RJ, Maer F. (1975) Right hemisphere lateralization for emotion in the human brain: interactions with cognition // Science. 190(4211):286-8.
467. Sergent J, Ohta S, MacDonald B (1992). "Functional neuroanatomy of face and object processing. A positron emission tomography study". Brain 115 (1): 15-36.
468. Sergent C, Baillet S, Dehaene S (2005) Timing of the brain events underlying access to consciousness during the attentional blink. Nat Neurosci 8:1391-1400.
469. Siapas A.G., Lubenov E.V., Wilson M.A. Prefrontal phase locking to hippocampal theta oscillations // Neuron, 2005, V. 46, P. 141-151.
470. Silva L.R., Amitai Y., Connors B.G. Intrinsic oscillations of neocortex generated by layer 5 pyramidal neurons // Science, 1991, V. 251, P. 432-435.
471. Singer W (1999) Neuronal synchrony: a versatile code for the definition of relations? Neuron 24:49-65.
472. Siniatchkin M, Gerber WD, Kropp P, Vein A. (1999) How the brain anticipates an attack: a study of neurophysiological periodicity in migraine. // Funct Neurol. 14(2):69-77.
473. Slobodskoy-Plusnin, J., Knyazev, G., Savostyanov, A., Levin, E. (2007). Behavioural approach system as a moderator of emotional arousal elicited by reward and punishment cues // Clinical EEG and Neuroscience, 38(3), 190.
474. Smith T, Glazer K, Ruiz J, Gallo L. (2004) Hostility, anger, aggressiveness, and coronary heart disease: an interpersonal perspective on personality, emotion, and health. J Pers; 72:1217-70.
475. Srinivasan R. Spatial structure of the human alpha rhythm: global correlation in adults and local correlation in children // Clinical Neurophysiology, 1999, V. 110, P. 1351-1362.
476. Stam CJ, van Cappellen van Walsum AM, Micheloyannis S. (2002) Variability of EEG synchronization during a working memoiy task in healthy subjects // Int J Psychophysioh 46(l):53-66.
477. Steptoe A, editor. Depression and Physical Illness. Cambridge, UK: Cambridge University Press; 2006.
478. Steriade, M., Nunez, A., Amzica, F. (1993a) A novel slow (<1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components. J. Neurosci., 13: 3252-3265.
479. Steriade M., Gloor P., Llinas R.R., Lopes da Silva F.H., Mesulam MtM. Basic mechanisms of cerebral rhythmic activities // Electroencephalography and Clinical Neurophysiology, 1990, V. 76, P. 481-508.
480. Steriade M., McCormick D.A., Sejnowski T.J. Thalamocortical oscillations in the sleeping and aroused brain // Science, 19936, V. 262, P. 679685.
481. Steriade M., Deschenes M., Domich L., Mulle C. Abolition of spindle oscillation in thalamic neurons disconnected from nucleus reticularis thalami // JournaLof Neurophysiology, 1985,XV. 54, P. 1473-1497.
482. Stern S, Dhanda R, Hazuda H. (2001) Hopelessness predicts mortality in older Mexican and European Americans. Psychosom Med; 63:344 -51.
483. Stevens A, Batra A, Kôtter I, Bartels M, Schwarz J. (2000) Both pain and EEG response to cold pressor stimulation occurs faster in fibromyalgia patients than in control subjects. // Psychiatry Res. 97(2-3):237-47.
484. Stewart M, Fox SE. (1991) Hippocampal theta activity in monkeys // Brain Res. 538(l):59-63.
485. Stewart JL, Levin-Silton R, Sass SM, Heller W, Miller GA. (2008) Anger style, psychopathology, and regional brain activity // Emotion. 8(5):701-13.
486. Strata F (1999) Intrinsic oscillations in С A3 hippocampal pyramids: Physiological relevance to theta rhythm generation,// Hippocampus, Volume 8 Issue 6, Pages 666 679
487. Stroop J. R. (1935) Studies of Interference in Serial Verbal Reactions. // Journal of Experimental Psychology, Vol. 18, No. 6, pp. 643-662.
488. Stryker MP. (1989) Is grandmother an oscillation? // Nature;338(6213):297-8.
489. Suffczynski P., Kalitzin S., Pfurtscheller G., Lopes da Silva F.H. Computational model of thalamocortical networks: dynamical control of alpha rhythms in relation to focal attention // International Journal of Psychophysiology, 2001, V. 43, P. 25-40.
490. Sun Y, Gao X, Han S. (2010) Sex differences in face gender recognition: an event-related potential study. // Brain Res. 1327:69-76.
491. Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain. New Yourk: Thieme.
492. Tamietto M, Castelli L, Vighetti S, Perozzo P, Geminiani G, Weiskrantz L, de Gelder B (2009) Unseen facial and bodily expressions trigger fast emotional reactions // PNAS, 106 (42) 17661-17666
493. Tapia M, Carretie L, Sierra B, Mercado F. (2008) Incidental encoding of emotional pictures: affective bias studied through event related brain potentials // Int J Psychophysiol. 68(3): 193-200.
494. Taylor S, Phan K, Decker L, Liberzon I. (2003) Subjective rating of emotionally salient stimuli modulates neural activity. Neuroimage; 18: 650-9.
495. Thatcher R.W., Krause P.J., Hrybyk M. Cortico- cortical associations and EEG coherence: a two-compartmental model // Electroencephalography and Clinical Neurophysiology, 1986, V. 64, P. 123-143.
496. Thayer, B.J., Johnsen, F.H. (2000). Sex differences in judgment of facial affect: A multivariate analysis of recognition errors. Scandinavian Journal of Psychology, 41, 243-246.
497. Tieger T. (1980) On the biological basis of sex differences in aggression // Child Dev;51(4):943-63.
498. Toates, F. (1998). The interaction of cognitive and stimulus-response processes in the control of behaviour. Neuroscience and Biobehavioral Reviews, 22, 59-83.
499. Tomarken AJ, Davidson RJ, Wheeler RE, Doss R (1992) Individual differences in anterior brain asymmetry and fundamental dimensions of emotion. JPers Soc Psychol 62:676-687.
500. Tononi G, Koch C (2008) The neural correlates of consciousness: an update. Ann N Y Acad Sci 1124:239-261.
501. Touryan SR, Johnson MK, Mitchell KJ, Farb N, Cunningham WA, Raye CL. (2007) The influence of self-regulatory focus on encoding of, and memory for, emotional words // Soc Neurosci. 2(1): 14-27.
502. Treisman, A.M., Kanwisher, N.G. (1998). Perceiving visually presented objects: Recognition awareness and modularity. Current Opinion in Neurobiology, 8, 218-226.
503. Trivers, R. (1972). Parental investment and sexual selection. In Campbell BB (Ed) Sexual selection and the descent of man (pp 136-179). Chicago: Aldine.
504. Tucker, D.M., Dawson, S.L., 1984. Asymmetric EEG changes as method actors generated emotions. //Biological Psychology 19, 63-75.
505. Ungerleider LG, Mishkin M (1982) Two cortical visual systems. In: Ingle DJ, Goodale MA, Mansfield RJW (Eds.) Analysis of Visual Behavior. InMTT Press, Cambridge, pp. 549-586.
506. Varela F., Lachaux J.P., Rodriguez E., Martinerie J. The brainweb: phase synchronization and large-scale integration // National Review of Neuroscience, 2001, V. 2, P. 229-239.
507. Vecchi T, Girelli L. (1998) Gender differences in visuo-spatial processing: the importance of distinguishing between passive storage and active manipulation // Acta Psychol (Amst). 99(1): 1-16.
508. Velmans, M. (1991). Is human information processing conscious? Behavior and Brain Science, 14, 651-726.
509. Velmans M (1991) Is human information processing conscious? Behav Brain Sci 14:651-726.
510. Vertes RP (2005) Hippocampal theta rhythm: a tag for short-term memory. Hippocampus 15:923-935.
511. Vinogradova OS (1995) Expression control and probable functional significance of the neuronal theta-rhythm. Progr Neurobiol 45:523-583.
512. Vitaliano P, Scanlan J, Ochs H, Syrjala K, Siegler I, Snyder E. (1998) Psychosocial stress moderates the relationship of cancer history with natural killer cell activity. Ann Behav Med; 20:199 -208.
513. Vogt F., Klimesch W., Doppelmayr M. (1998) High frequency components in the alpha band and memory performance. Journal of Clinical Neurophysiology, 15: 167-172.
514. Vogt B, Finch D, Olson C. (1992) Functional heterogeneity in cingulate cortex: the anterior executive and posterior evaluative regions. Cereb Cortex; 2:435-43.
515. Vogt BA, Gabriel M. (1993) Neurobiology of Cingulate Cortex and Limbic Thalamus. Boston: Birkhauser.
516. Wacker J, Dillon DG, Pizzagalli DA (2009); The role of the nucleus aceumbens and rostral anterior cingulate cortex in anhedonia: Integration of resting EEG^ fMRI, and volumetric techniques. Neurolmage 46:327-337.
517. Watanabe S, Miki K, Kakigi R. (2005) Mechanisms of face perception in humans: a magneto- and electro-encephalographic study. // Neuropathology. 2005 Mar;25(l):8-20.
518. Weiskrantz E. (1956) Behavioral changes; associated with ablation of the amygdaloid complex in monkeys. J Comp Physiol Psychol; 49:381-91.
519. Weiskrantz L. Blindsight: implications for the conscious experience of emotion. In: Lane R, Nadel L, Ahern G, Allen J, Kaszniak A, Rapcsak S, Schwartz G, editors. (2000) Cognitive Neuroscience of Emotion. New York: Oxford University Press.
520. Whalen P J, Shin L.M, Mclnerney S.C, Fischer H., Wright C.L, Rauch S.L. A functional MRI study of human amygdala responses to facial expressions of fear versus anger // Emotion, 2001, V. 1, № 1, P. 70-83.
521. Whalen P J., Rauch S L., Etcoff N L., Mclnerney S C., Lee M B., Jenike M A. (1998) Masked5 Presentations of Emotional Facial Expressions Modulate
522. Amygdala Activity without Explicit Knowledge // The Journal of Neuroscience, 18(1):411-418
523. Williams JM, Mathews A, MacLeod C (1996) The emotional Stroop task and psychopathology. Psychol Bull 120:3-24.
524. Williams MA, Berberovic N, Mattingley JB (2007). Abnormal FMRI adaptation to unfamiliar faces in a case of developmental prosopamnesia. Curr. Biol. 17 (14): 1259-64.
525. Williams L, Liddell B, Kemp A, Bryant R, Meares R, Peduto A, Gordon E. (2006) An amygdala-prefrontal dissociation of subliminal and supraliminal fear. Hum Brain Mapp; 27:661-2.
526. Winkielman P, Berridge K. (2004) Unconscious emotion. Current Directions in Psychological Science; 13:120-3.
527. Wojciulik E, Kanwisher N, Driver J. (1998) Covert visual attention modulates face-specific activity in the human fusiform gyms: fMRI study. // J Neurophysiol. 79(3): 1574-8.
528. Worsley KJ, Marrett S, Neelin P, Vandal AC, Friston KJ, Evans AC (1996) A unified statistical approach or determining significant signals in images of cerebral activation. Hum Brain Mapp 4:58-73.
529. Yang CC, Shaw FZ, Lai CJ, Lai CW, Kuo TB. (2003) Relationship between electroencephalogram slow-wave magnitude and heart rate variability during sleep in rats. //Neurosci Lett. 336(l):21-4.
530. Yang J, Weng X, Zang Y, Xu M, Xu X. (2010) Sustained activity within the default mode network during an implicit memory task // Cortex. 46(3):354-66.
531. Young L, Bechara A, Tranel D, Damasio H, Hauser M, Damasio A. (2010) Damage to ventromedial prefrontal cortex impairs judgment of harmful intent // Neuron. 65(6):845-51.
532. Zald D H., Pardo J V. (1997) Emotion, olfaction, and the human amygdala: Amygdala activation during aversive olfactory □ stimulation // PNAS, vol. 94 no. 8, p: 4119-4124
533. Zink CF, Stein JL, Kempf L, Hakimi S, Meyer-Lindenberg A. (2010) Vasopressin modulates medial prefrontal cortex-amygdala circuitry during emotion processing in humans // J Neurosci.; 30(20):7017-22.