автореферат и диссертация по педагогике 13.00.02 для написания научной статьи или работы на тему: Формирование самостоятельной деятельности учащихся на основе дифференцированного обучения математике в условиях сельской начальной малокомплектной школы
- Автор научной работы
- Борисова, Ирина Валентиновна
- Ученая степень
- кандидата педагогических наук
- Место защиты
- Москва
- Год защиты
- 2005
- Специальность ВАК РФ
- 13.00.02
Автореферат диссертации по теме "Формирование самостоятельной деятельности учащихся на основе дифференцированного обучения математике в условиях сельской начальной малокомплектной школы"
о
Министерство образования и науки Российской Федерации Московский государственный областной университет
На правах рукописи
Борисова Ирина Валентиновна
ФОРМИРОВАНИЕ САМОСТОЯТЕЛЬНОЙ ДЕЯТЕЛЬНОСТИ УЧАЩИХСЯ НА ОСНОВЕ ДИФФЕРЕНЦИРОВАННОГО ОБУЧЕНИЯ МАТЕМАТИКЕ В УСЛОВИЯХ СЕЛЬСКОЙ НАЧАЛЬНОЙ МАЛОКОМПЛЕКТНОЙ ШКОЛЫ
Специальность:
13.00.02 - теория и методика обучения и воспитания (математика) АВТОРЕФЕРАТ
диссертации на соискание ученой степени кандидата педагогических наук
Москва 2005
Работа выполнена на кафедре математического анализа Московского государственного областного университета
Научный руководитель: заслуженный деятель науки РФ, член, корреспондент РАО, доктор педагогических наук, профессор Луканкин Геннадий Лаврович
Официальные оппоненты: доктор педагогических наук, профессор
Сергеева Татьяна Федоровна
кандидат педагогических наук Кузнецов Владимир Иванович
Ведущая организация: Московский государственный открытый
педагогический университет им. М.А.Шолохова
Защита состоится 22 февраля 2005 г. в часов
на заседании диссертационного совета Д212.155.09 по защите докторских диссертаций по специальностям:
13.00.02 -теория и методика обучения и воспитания (математика),
13.00.02 - теория и методика обучения и воспитания (физика),
13.00.08 - теория и методика профессионального образования в Московском
государственном областном университете по адресу: 107005, г.Москва, ул.
Радио, д. 10 а, корп. 1, ауд. 10
с диссертацией можно ознакомиться в библиотеке Московского государственного областного университета. Автореферат разослан « » января 2005 года
/ ^
Ученый секретарь / / Л.Н.Анисимова
диссертационного совета, доктор педагогических наук, профессор
Общая характеристика работы
Актуальность исследования. На современном этапе развития общества в нашей стране складывается новый тип человека - человека свободного в своих мыслях, поступках, хозяина земли. Идет переоценка ценностей, таких как земля, природа, история, национальная культура и образование. В связи с этим происходит модернизация системы образования.
В настоящее время сельская школа является единственным интеллектуально-культурным центром села. И, следовательно, она должна стать школой: демократической, развивающей творческие способности и самостоятельную деятельность ребенка, индивидуального и дифференцированного обучения, общения и познания окружающей природы, здоровья и физического развития детей, высокой нравственности и этических норм поведения и др.
В рамках реформирования образования значительное внимание следует уделить сельской школе. Система образования должна создавать в школе атмосферу доверия и радости, и тем самым способствовать развитию творческих способностей детей, стимулировать их учебную деятельность и познавательную активность.
В связи с этим определяются новые цели начального образования. Все они направлены на воспитание и развитие творческой личности ребенка на основе формирования его учебной деятельности, не снижая при этом программных требований к предметным знаниям, умениям, навыкам.
Психофизиологические особенности учащихся, разные уровни их умственных способностей закономерно требуют неодинаковых условий обучения для обеспечения эффективного обучения и развития каждого ребенка или группы детей.
Чтобы не сдерживать темпы развития, необходимо индивидуализировать учебный процесс, т.е. сделать так, чтобы каждый ученик работал в своем темпе, в соответствии со своими способностями. Разным ученикам требуется разное
время, разный объем, разные формы и виды работ, чтобы овладеть программным материалом.
В настоящее время в педагогической системе не всегда учитываются эти различия. Проблема дифференцированного подхода не получила полного решения и в системе, развивающего обучения, несмотря на существование достаточно большого числа работ, посвященных этой теме.
Анализ психолого-педагогической и методической литературы (Занков А.В., Гальперин П.Я., Выготский Л.С., Давыдов В.В., Пидкасистый П.И., Рубенштейн С.Л., Суворова Г.Ф., Стрезикозин В.П., Колягин Ю.М., Зайкин М.И., Сергеева Т.Ф., Моро М.И., Вапняр Н.Ф., Чекмарева Т.К., Кузнецов В.И. и др.) и педагогической практики показали, что для полноценного осуществления дифференцированного подхода к обучению необходимо сформировать у детей некоторые умения самостоятельной учебной деятельности; уделять внимание индивидуальной работе с младшими школьниками (особенно в условиях сельской школы, где одновременно обучаются дети разных возрастных групп, и при этом дети в каждом классе имеют разное физическое, психическое развитие, разные умственные способности к обучению, интересы и мотивы).
Следует заметить, что в настоящее время недостаточно разработана методика дифференцированного обучения именно в сельской начальной малокомплектной школе, где 50-70 % учебного времени отводится на самостоятельную работу. Под самостоятельной работой мы понимается такую деятельность, при которой ученики проявляют высокую активность, инициативу, творчество, делают на уроках математики самостоятельные выводы. Самостоятельность - это ориентировка в новых условиях, использование знаний и умений в конкретных практических заданиях.
Если учитель вводит учащегося в учебную деятельность через планирование, исполнение и анализ проделанной работы, то выполняя эту деятельность при постоянно уменьшающейся помощи учителя, ребенок переходит из зоны ближайшего развития в зону активного развития (по идее
Л.С. Выготского), в которой он учебную деятельность может выполнять уже вполне самостоятельно.
В плане новых современных подходов к обучению в сельской начальной малокомплектной школе самостоятельная деятельность может стать систематическим методом и принципом обучения в начальной школе. Формирование у учащихся учебной самодеятельности является основной формой учебной деятельности в учебно-воспитательном процессе будущей школы, где будут обучать общим приемам умственной деятельности по усвоению математических понятий.
Овладение общими приемами умственной деятельности даст возможность выпускникам начальной школы как можно быстрее и легче адаптироваться в условиях обучения в основной школе, обеспечивая тем самым преемственность начальной и основной школы.
Перечисленные проблемы определяют актуальность тематики исследования.
Проблема исследования заключается в поиске путей, средств и форм осуществления дифференцированного подхода в условиях сельской начальной малокомплектной школы с целью формирования у учащихся самостоятельной деятельности.
Цель исследования - разработать теоретическое обоснование, на базе которого можно будет создать новое методическое обеспечение для сельской начальной малокомплектной школы, которое позволит реализовать идеи дифференцированного подхода на уроках математики.
Объектом исследования является учебно-воспитательный процесс в сельской начальной малокомплектной школе, а его предметом -самостоятельная деятельность сельских школьников на уроках математики.
Гипотеза исследования предполагает, что если формирование самостоятельности в сельской начальной малокомплектной школе станет систематическим методом обучения математике на основе идеи развивающего
обучения, то это приведет к значительному усилению познавательных процессов у школьников, что незамедлительно скажется на повышении качества обучения.
В соответствии с целью и гипотезой исследования потребовалось решить следующие задачи:
- проанализировать психолого-педагогическую и методическую литературу по проблеме исследования;
- определить теоретические положения развивающего обучения, на основе которых будут формироваться общие приемы учебной деятельности на уроках математики;
- разработать учебные дидактические материалы, соориентированные на самостоятельную деятельность младших школьников при решении математических задач с учетом дифференцированного подхода к обучению учащихся;
- проверить эффективность разработанных методических средств в педагогической практике.
Методической базой исследования стали идеи гуманизма и демократизации образования, целостного системного подхода к педагогическому процессу; единства, взаимосвязи и взаимодействия объективного и субъективного, традиционного и инновационного, концепция личностно-ориентированного образования; теория развивающего обучения.
Теоретической основой исследования явились труды известных отечественных дидактов,. ведущих представителей отечественной психологической науки: А.В. Занкова, Л.С. Выготского, П.Я. Гальперина, В.В. Давыдова, С.Л. Рубинштейна и др.; труды исследователей обсуждаемой проблемы: Г.Ф. Суворовой, Ф.С. Авдеева, М.И. Зайкина, В.П. Стрезикозина, Сергеева Т.Ф., М.И. Моро, Н.Ф. Вапняр, Т.К. Чекмаревой, В.И. Кузнецова и др.
Для решения поставленных задач применялись следующие методы исследования:
- теоретический анализ поставленной проблемы на основе изучения психолого-педагогической и методической литературы;
- педагогический анализ программы начальной школы, учебников по математике, методических пособий и дидактических материалов с целью совершенствования организации учебного процесса в сельской начальной малокомплектной школе при использовании дифференцированного подхода;
- диагностические методы (анкетирование, индивидуальные беседы, наблюдения);
- проведение эксперимента;
- количественный и качественный анализ полученных результатов исследования.
Исследование проводилось поэтапно:
На первом этапе (1999-2000 гг.) осуществлялось изучение и анализ психолого-педагогической и методической литературы по проблеме дифференцированного подхода в обучении математике в условиях сельской начальной малокомплектной школы с целью выявления теоретических основ соответствующей методики обучения, изучалось состояние исследуемой проблемы в школьной практике; проводился констатирующий эксперимент.
На втором этапе (2000-2001 гг.) разрабатывались основные положения методики обучения математике, учитывая при этом идеи дифференцированного подхода в специфических условиях обучения сельских младших школьников Составлялся план и методика поискового эксперимента.
На третьем этапе (2001-2003 гг.) осуществлялось экспериментальное обучение младших школьников, уточнялись и оформлялись основные результаты и выводы исследования.
Исследование проводилось в основном в Тюковской основной общеобразовательной школе Клепиковского района Рязанской области, а также в малокомплектных сельских школах (Чебукинской, Колычевской, Задне-
Пилевской, Макеевской, выше указанного района, где проводился педагогический эксперимент.
Научная новизна исследования заключается в следующем: установлено, что новое поколение методического обеспечения для сельских начальных малокомплектных школ позволит, используя разработанную методику, целенаправленно формировать самостоятельную деятельность школьников, учитывая при этом специфические особенности школ данного типа (где происходит обучение разновозрастных групп с малой наполняемостью классов и где в учебном процессе преобладает самовоспитательная работа школьников), посредством научения общим приемам учебной деятельности по усвоению математических понятий: наблюдению, анализу, установлению аналогий, абстрагированию, синтезу, обобщению, индукции и другим, включая в аппарат управления самостоятельной работой ориентировочные, исполнительские, контрольные и корректировочные действия, обучая детей действиям самоконтроля и оценки своей деятельности.
Установлено так же, что при разработке учебных материалов необходимо особое внимание уделять ориентировочной деятельности учащихся при решении математических задач, где дети должны быть обеспечены такой информацией, в которой в наиболее обобщенном виде представлены правила и способы (ориентиры) того действия, которое предстоит усвоить учащимся.
Новизной исследования также состоит в том, что разработаны методические материалы для работы с детьми на ученическом базовом и творческом уровнях, способствующие переходу в сельских школах на индивидуальное обучение младших школьников, а также разработана диагностическая система контроля экспериментального обучения, содержащая дневники успеваемости, в которых фиксируются результаты самостоятельных работ, контрольных работ, математических диктантов и выполнение творческих задач.
Разработанная методика с успехом может использоваться при создании компьютерных обучающих программ.
Обоснованность и достоверность полученных результатов и выводов обеспечивается: полнотой изученного фактического материала, набором соответствующих методов исследования, опорой на новейшие достижения психолого-педагогической науки, соответствием минимуму стандартам образования, результатами обучающего эксперимента и положительной оценкой учителями и методистами сельских школ методики индивидуально-дифференцированного подхода к учащимся в процессе их обучения математике.
Теоретическая значимость исследования заключается в том, что разработана методика, обеспечивающая доступность и высокую эффективность применения в учебном процессе малокомплектной начальной школы дифференцированных заданий для самостоятельной работы; разноуровневых заданий позволяющих значительно усовершенствовать обучение математике младших школьников. Эта методика может быть использованы в дальнейших научных исследованиях по совершенствованию методической системы обучения младших школьников математике в школах данного типа. В исследовании разработаны теоретические положения, связанные с методикой использования дифференцированного подхода в обучении математики как средства обучения младших школьников приемам решения задач с целью формирования самостоятельной деятельности учащихся сельских школ.
Практическая значимость исследования состоит в том, что методические рекомендации, в которых раскрываются общие приемы решения задач с использованием дифференцированного подхода к каждому ребенку, могут быть использованы учителями сельских школ в повседневной практике обучения младших школьников математике; обеспечивают преемственность в обучении с основной школой и могут служить базой для усвоения систематического курса математики; рекомендации по использованию
дифференцированного подхода в условиях сельской малокомплектной начальной школы позволят повысить качество обучения, а также значительно усилить мотивацию к изучению учебного предмета «математика».
Апробация и внедрение результатов эксперимента осуществлялось в практике работы малокомплектных школ Клепиковского района Рязанской области (Тюковской, Чебукинской, Колычевской, Макеевской и др.), на семинарах учителей.
На защиту выносятся:
- Теоретические основы использования дифференцированного подхода в процессе обучения младших школьников математике в условиях сельской начальной малокомплектной школы (методическая система обучения младших школьников решению математических задач, особенности дифференцированного подхода при организации самостоятельной работы на уроках математики).
- Основные положения методики применения дифференцированного подхода как средства обучения младших школьников приемам решения задач с целью формирования самостоятельной деятельности учащихся сельской школы (дидактические материалы для учащихся, методические рекомендации для учителей, диагностика влияния дифференцированного подхода на формирование общих приемов решения задач).
- Положительные результаты педагогического эксперимента, подтверждающие эффективность предложенной методики.
Структура диссертации:
Диссертационная работа состоит из введения, 3-х глав, заключения, списка литературы и приложения.
Основное содержание работы
Во введении обосновывается актуальность темы исследования, определяются его цель и задачи, формулируется гипотеза, характеризуется научная новизна, теоретическая и практическая значимость работы, формулируются положения, выносимые на защиту.
В главе 1 «Анализ психолого-педагогической практики сельской начальной малокомплектной школы и дальнейшее совершенствование учебного процесса в школах данного типа» рассматривается состояние и перспективы развития сельской начальной малокомплектной школы, т.к. в духовной жизни общества все более возрастает роль общеобразовательной школы. Но в настоящее время происходит существенное изменение сети школ, идет процесс их укрупнения: общее число школ уменьшается, но увеличивается количество средних школ.
Следует, однако, иметь ввиду, что характерной особенностью сельской школьной сети является преобладание малокомплектных школ. Из общего числа имеющихся в России школ 69,8 % (45 тысяч) расположены в сельской местности. В них обучается 30,6 % (5,9 млн. чел.) учащихся. Происходит резкое измельчание сельских школ. В России 5604 сельские школы, где учатся меньше 10 детей.
Как известно, функционирование образовательных учебных заведений является одним из важнейших факторов социальной стабильности на селе. В прямой зависимости от наличия школы находится демографическая ситуация, развитие экономики в сельской местности.
Практика показывает, что в сельских школах с малой наполняемостью нельзя удовлетворительно применять традиционные «городские» классно-урочные методики, а также сложившиеся формы воспитательной работы. Как правило, это приводит к снижению качества образования.
Следует учитывать тот факт, что учащиеся сельских школ имеют более низкий уровень функциональной готовности к школе, т.к. в сельской местности
сеть детских садов недостаточно развита и число детей, посещающих детские сады, невелико. Усвоение программного материала детьми, которые функционально незрелы и не готовы к обучению в школе, достигается большими физическим и психическим напряжением сил.
Но с другой стороны в развитии и обучении сельских детей имеются и положительные стороны. Сам факт того, что школа находится на селе, а следовательно - на природе, говорит о том, что учащиеся и учителя имеют возможность проводить уроки в естественных условиях, т.е. на школьном огороде, поле, в походах и экскурсиях. Учитель сельской школы имеет возможность проводить однотемные и одновременные занятия с разновозрастными детьми на уроках музыки, трудового обучения, физического воспитания и т.д. А также обучение в сельской школе дает возможность проводить совместные школьные праздники и внеклассные мероприятия.
Поэтому одним из путей решения данной проблемы мы видим в использовании дифференцированного подхода, в разработке учебных пособий по индивидуальной и групповой работе с учащимися.
Также в данной главе рассматриваются психолого-педагогические условия обучения, воспитания и развития учащихся начальных классов малокомплектной школы, уделяется внимание возрастным и индивидуальным особенностям младшего школьника.
Успехи, как и отставание психического развития младшего школьника, прежде всего связаны с характером его учебной деятельности, способами её организации.
Совершенствование обучения, воспитания и развития учащихся начальных классов возможно при соблюдении главного условия - реализации в практике обучения личностного подхода к учащимся. А это предполагает использование разнообразных путей формирования активной позиции учащихся в процессе овладения знаниями, умениями, навыками, одним из которых и является дифференцированный подход.
Активная позиция человека формируется с самого раннего детства. Благодаря своей активности ребенок познает окружающий мир. Но активность маленького человека находится в руках взрослых. Взрослый строит программу развития ребенка, открывает ему средства и орудия познавательной деятельности. Важная роль в этом принадлежит учителю в сельской начальной малокомплектной школе, который зачастую является тем единственным взрослым, обеспечивающим развитие ребенка.
Специфика организации учебного процесса в малокомплектной школе определяется несколькими факторами: структура комплекта, расписание занятий, организация труда учителя и учеников в ходе уроков, преемственность, степень подготовленности учащихся к самостоятельной работе.
Предпочтительна такая организация урока, при которой, объяснив новый учебный материал и задания для выполнения самостоятельной работы, учитель полностью переключается на занятие с другим классом. Но для того, чтобы строить урок таким образом, дети должны быть обучены приемам самостоятельной работы.
Анализ методической литературы и практической деятельности показал, что наибольшие затруднения учителя испытывают именно в организации самостоятельной работы младших школьников в малых разновозрастных группах, формирование умения работать с учебной информацией, изучение динамики учебных достижений и личностного развития ребенка.
В главе 2 «Методическая система обучения младших школьников решению математических задач с элементами дифференцированного подхода в учебном процессе сельской малокомплектной школе» рассмотрены следующие вопросы: методические подходы в обучении младших школьников обобщенным способам решения задач; индивидуальный
(дифференцированный) подход к построению учебно-методического комплекта для разностороннего развития младших школьников, для выбора каждым
школьником образовательной ниши, соответствующей уровню развития и ясно намеченных путей продвижения. В методике обучения младших школьников решению задач на «равномерные процессы» отбирается такой комплекс информационных и контрольных средств обучения, который удовлетворял бы специфическим требованиям учебного процесса малокомплектной школы, оказывая существенное влияние на формирование у учащихся общих приемов решения задач.
Необходимыми условиями достижения нового, современного качества общего образования является личностная ориентированность, дифференциация и индивидуализация образования для обеспечения минимума образования и государственных стандартов.
Но в сельской малокомплектной школе сложилась парадоксальная ситуация: малое количество учащихся в классе не позволяет значительно улучшить качество обучения, несмотря на данные педагогической психологии, что все дети способны учиться успешно в начальной школе, если создать для них необходимые условия на основе педагогической поддержки его индивидуальности в условиях специально организованной деятельности.
Говоря об оптимальном развитии школьника в условиях педагогической поддержки его индивидуальности при обучении, мы имеем в виду, что развитие школьника должно быть оптимальным по сравнению с его же развитием в условиях любой другой модели обучения, которая не организует этой поддержки посредством прямого контакта с учителем или опосредовано через учебно-методический комплект.
Проблема дифференцированного подхода не является новой. Она достаточно глубоко и содержательно представлена в работах Л.В. Занкова, Л.С. Рубинштейна, Г.Ф. Суворовой, В.П. Стрезикозина, М.И. Зайкина и др.
Однако выдвижение концептуальной идеи планирования обязательных результатов обучения позволило подойти к этой проблеме с новых позиций. Принципиальное отличие нового подхода состоит в том, что перед разными
категориями учащихся ставятся различные цели: одни ученики должны достичь определенного объективно обусловленного минимального уровня образования * математической подготовки, а другие, проявляющие интерес к математике и обладающие хорошими математическими способностями должны добиться более высоких результатов, уровня, называемого базовым.
Мы также определили концептуальные подходы к обоснованию методического обеспечения сельской малокомплектной школы.
С учетом психолого-педагогических достижений Н,Ф. Талызиной, П.Я. Гальперина, Д.Н. Богоявленского и др. разработаны требования к содержанию и форме заданий (дидактических материалов):
при составлении заданий следует прежде всего ориентироваться на ту новую деятельность, которая формируется;
на различных этапах усвоения задачи, задания должны предлагаться в определенной форме (по концепции П.Я. Гальперина: от конкретных действий с материальными объектами (счетные палочки, кубики и т.д.) при громком проговаривании до проговаривания «про себя» при действиях с материализованными и абстрактными объектами (рисунками, чертежами), переводя рассуждения во «внутренний план» умственной деятельности);
количество заданий зависит от сложности формируемой деятельности, от уровня умственного развития ребенка, от цели;
задания необходимо подбирать и вводить их в определенном порядке, учитывая при этом, что преобразование действия и знания должны идти не только по форме, но и по мере обязанности, автоматизации и т.д.;
задания не должны быть однотипны, тогда обобщение идет более успешно;
завершается цикл обучения, когда ученик из состояния незнания, неумения по отношению к знаниям и действиям, переходит в состояние знания и умения.
На основе данных требований а диссертации разработан учебно-экспериментальный материал обучения общим приемам решения задач на «равномерные процессы» с учетом индивидуальных особенностей учащихся, базирующийся на современной методике обучения математике младших школьников и учебных материалах, программе (III - IV кл.), учебниках математики В.И. Кузнецова.
Также в этой главе уделяется внимание частной методике обучения учащихся начальных классов решению задач на «равномерные процессы», которые раскрывают и показывают учащимся объективность и закономерность связей между явлениями и процессами, имеющими место в окружающей действительности, особенно в природе и технике.
К задачам на «равномерные процессы» относятся задачи на выполнение работы при постоянной производительности труда, на оплату стоимости всего товара при постоянной цене единицы товара, на определение общего веса продукции при постоянном весе единицы продукции и т.д. Но наиболее типичным видом задач на «равномерные процессы» являются задачи на движение.
Эта задачи играют очень большую роль в математическом образовании и развитии учащихся и в то же время, как показывает опыт массового обучения, они являются наиболее трудными для учащихся начальных классов. Это обстоятельство и натолкнуло на разработку учебно-экспериментальных материалов, направленных на совершенствование методики решения задач на «равномерные процессы».
Целями и задачами предполагаемого методического пособия являются: усвоение всеми учащимися начальных классов в сельской школе программы по математике;
создание условий для продвинутых учащихся, успешно обучающихся, индивидуального темпа продвижения по учебной программе;
осуществление диагностики качества обучения каждого ученика (группы учеников) по разделам, темам программы с целью совершенствования организации учебного процесса;
- пропедевтика основных математических понятий.
Для того, чтобы осуществить дифференцированный подход, материалы составлены в двух вариантах, различающихся степенью помощи ученикам. На наш взгляд, серьезные возможности актуализации, учета и развития индивидуальных особенностей учеников начальных классов заложены в систематическом предъявлении заданий на двух уровнях интеллектуальной самостоятельности как со вспомогательными элементами, так и без них.
Мы выделяем задания, направленные на усвоение обязательного уровня математической подготовки (первый уровень - ученический). Ко второму уровню сложности (творческий) относятся задания, рассчитанные на применение учебного материала в измененной, усложненной или новой ситуации. Теоретический анализ методической литературы позволил найти объективные критерии отнесения заданий к одному или другому уровню.
Систематическое использование вспомогательных элементов к заданиям одного или другого уровня, в зависимости от индивидуальной готовности учеников начальной малокомплектной школы выполнять те или иные действия, позволит предъявить ребенку такое задание, с которым он может справиться в данный момент, приложив умеренные усилия.
Вслед за Н.Ф. Вапняр, Г.Ф. Суворовой [88], мы предлагаем использовать в начальных классах следующие вспомогательные элементы: предписания алгоритмического характера, вспомогательные вопросы и указания, схемы и иллюстрации, задачи с частичным решением, образцы рассуждений, выполнения заданий и др.
Разработанная методика включает в себя следующие этапы усвоения учащимися необходимой системы представлений и знаний:
1) формирование общего представления о решении задач;
2) формирование представлений об этапах решения задач (анализ, поиск путей решения, выбор способа решения и т.д.);
3) обучение решению задач с помощью анализа решенных задач;
4) самостоятельное решение задач под руководством и без участия учителя;
5) самостоятельная деятельность учащихся (преобразование задач, составление подобной задачи и т.д.);
6) диагностика качества обучения.
Несмотря на то, что теоретические основы организации самостоятельной работы глубоко разработаны современными учеными, вопросы организации грамотной диагностики школьных достижений учеников сельской начальной малокомплектной школы с точки зрения анализа конкретных видов деятельности, еще не разработаны. Учителя нуждаются в научно разработанных методических рекомендациях по этой проблеме.
В диссертации приводится описание уроков и отдельных типичных фрагментов урока, иллюстрирующих предлагаемую нами методику.
В главе 3 «Внедрение в педагогическую практику методических идей дифференцированного обучения на примере решения задач на "равномерные процессы"» содержится описание и анализ результатов экспериментальной работы, включающей констатирующий, поисковый, обучающий эксперимент.
Вся экспериментальная работа проводилась в течение 1999-2003 гг.
В обучающем эксперименте участвовала Тюковская школа и учителя Тюковской школы Клепиковского района Рязанской области: М.А. Липатова, М.В. Борисова, И.В. Борисова.
В соответствии с поставленными задачами экспериментальная часть исследования проводилась в несколько этапов.
На первом этапе изучались и анализировались ныне существующие методики обучения математике младших школьников, особенно процесс обучения решению задач. Изучался опыт применения дифференцированного
подхода в малокомплектных школах и опыт диагностики качества обучения учеников начальных классов, выявлялись основные положения развивающего обучения.
Работа проводилась в форме констатирующего эксперимента на базе 3-х и 4-х классов, цель которого состояла в выявлении степени сформированном^ специальных математических умений, в определении степени сформированности качественности признаков полноценной обученности.
Учащимся экспериментальных классов предлагалось выполнить работу, включающую ряд заданий по математике.
Анализ выполненных работ показал, что учащиеся экспериментальных классов справились с не более чем 50 % заданий, при этом процент выполнения ими заданий творческого характера был еще ниже.
Это позволило сделать следующие выводы:
- во-первых, работа по формированию математических понятий у учащихся требует большего внимания со стороны учителя;
- во-вторых, обучать сельских детей общим приемам решения задач необходимо с учетом их задатков, интересов и наклонностей.
На втором этапе была разработана модель диагностики учащихся, которая включает следующие параметры по каждой теме: математические диктанты, самостоятельные, контрольные работы, творчески задания. Учитывались при этом психологические критерии сформированности вычислительных навыков: осознанность, прочность, безошибочность, вычислительная скорость, гибкость).
Для диагностики были использованы контрольно-проверочные работы И С. Ордынской, Н.Г. Уткиной, тетради с печатной основой В.И. Кузнецова и др.
Проведя поэлементный анализ учебного материала (видов задач по математике для III, IV кл.), используя данные диагностики учащихся и учитывая уровень сформированности самостоятельной деятельности, мы
подобрали задания минимально-обязательного уровня. Предусматривая возможность выхода за рамки минимального уровня наиболее перспективными учениками, мы сконструировали задания второго уровня интеллектуальной самостоятельности.
На третьем этапе проводился обучающий эксперимент в малокомплектной школе Клепиковского района Рязанской области.
В ходе обучающего эксперимента проверялась эффективность предложенной нами методики. Эксперимент проводился в ходе изучения всего программного материала III, IV классов.
Систематически на каждом уроке велась диагностическая работа с целью выявления результатов обучения.
Индивидуальная самостоятельная работа проводилась по относительно стабильным группам, состав которых корректировался на основе проводимых диагностических работ (параметров): математических диктантов, самостоятельных и контрольных работ и творческих заданий.
В конце учебного года можно было говорить о заметном повышении уровня сформированности умения решать задачи у детей, прошедших экспериментальное обучение.
Динамика успешности обучения отражена в диаграммах 1 и 2.
При анализе результатов обучения Анохиной Натальи (диаграмма 1) мы видим, что в начале учебного года по всем параметрам ученица имела нестабильные результаты - оценки за работы колебались между «3» и «5». Но к концу учебного года уровень успеваемости обучения повысился и оценки стабилизировались. В ходе индивидуальных бесед выявлялись ход выполнения задания, затруднения при его выполнении. Несмотря на ошибки при выполнении работ с этой ученицей имелась возможность работать на творческом уровне. К концу учебного года ученица овладела в полной мере навыками самоконтроля.
оценка
Диаграмма 1
со<оо>смюсот-^гг-.
т-т-т-СМСЧСМООСОСО
номер работы
- Математический диктант
- Контрольная работа
—Самостоятельная работа
-Ж- Творческие и занимательные задания
Результаты нашего исследования по повышению качества обучения Журавлева Ивана представлена на диаграмме 2.
оценка
4,5 4 3,5 3 2,5 2 1,5 1
0,5
Диаграмма 2
^.oc^<ocnм^ncoт-чN
т-т-т-т-ГМСМСМСОММ
—Математический диктант —Самостоятельная работа —А— Контрольная работа -Ж-Творческие и занимательные задания
номер
Из этой диаграммы видно, что качество обучения в начале учебного года - ниже среднего. Но хотя к концу учебного года данный ученик не достиг высокого качества обучения, но в его работах стали появляться положительные оценки и по всем параметрам стало больше «троек», чем «двоек».
Учитывая типичные ошибки, ученику предлагались дифференцированные задания ученического уровня и оказывалась помощь при индивидуальных беседах. К концу учебного года ученик научился самостоятельно решать некоторые задачи ученического уровня.
Диаграммы наглядно иллюстрируют повышение качества обучения и его стабильность. Это позволило нам сделать вывод о том, что незначительные изменения в способах представления и подачи учебной информации, заметно повышает умения учащихся решать задачи.
Следует отметить также и повышение мотивации учащихся и усиление интереса к изучаемому предмету как факторы, влияющие на качество усвоения учебного материала.
Изучение уровней сформированности и усвоения знаний, умений и навыков в экспериментальном классе достаточно полно подтверждают общую положительную оценку результатов обучения.
Результаты свидетельствуют о том, что качество обучения по всем параметрам на начало года колебалось от 50 % до 70 %, а на конец года - от 70 % до 90 %. У некоторых детей качество обучения было стабильно на протяжении учебного года - 90 % -100 %. С этими детьми была необходимость заниматься на творческом уровне.
Методика обработки экспериментальных данных заключалась в следующем:
- результаты работы каждого ученика на каждом уроке заносились в дневник успеваемости в течение всего цикла экспериментального обучения, с целью выявления частоты допущенных ошибок, их типичности и качественной характеристики;
для анализа и сравнения экспериментальных данных строились столбчатые диаграммы динамических функций распределения результатов.
Результаты экспериментального обучения по каждому параметру заметно преобладают над результатами традиционного обучения. В диссертации это наглядно подтверждается серией графиков и их детальным описанием.
Результаты проведенного эксперимента подтверждают выдвинутую гипотезу и доказывают эффективность предложенной методики.
В Заключении подведены итоги исследования, изложены основные выводы:
1. На основе анализа современной психолого-педагогической литературы, теории и практики сложившейся методики обучения младших школьников математике выявлены особенности и существо процесса формирования общих приемов решения задач, условия и критерии успешного их формирования, определены возможности совершенствования этого процесса при широком использовании дифференцированного подхода.
2. Выявлены особенности дифференцированного подхода при организации самостоятельной работы на уроках математики в сельской начальной малокомплектной школе.
. 3. Разработана и экспериментально проверена методика применения дифференцированного подхода, включающая систему дидактических материалов для учащихся и методические рекомендации для учителей, обеспечивающая использование дифференцированного подхода на уроках математики в малокомплектной школе. Данная методика включает наиболее эффективные приемы самостоятельной работы с использованием дифференцированного подхода.
4. Разработана методика оценки влияния дифференцированного подхода на формирование общих приемов решения задач в основе этой методики лежат наблюдения за процессом формирования общих приемов решения задач при помощи дневников успеваемости (графиков распределения результатов,
характеризующих выполнение учениками упражнений определенного вида по темам программы). Такой подход позволяет проводить измерения качественных сдвигов в ходе выполнения учащимися упражнений различных видов.
Применение дифференцированного обучения и методической системы, предназначенных для работы в условиях сельской начальной малокомплектной школы, повысили уровень умений у младших школьников. (В среднем каждый ученик экспериментального обучения улучшил свои успехи в учебе примерно на 1 балл, т.е. на 20 %).
Анализ результатов экспериментальной работы свидетельствует о том, что сформированные навыки характеризуются осознанностью, безошибочностью действий, их прочностью (устойчивостью), гибкостью навыка и широкими возможностями его совершенствования.
5. Результаты опытно-экспериментальной работы по оценке эффективности предложенной методики подтвердили предположения гипотезы, что оказалось существенным и важным в процессе раскрытия индивидуальных способностей ребенка.
Таким образом, исследование позволило усовершенствовать методику обучения математике в учебном процессе сельской начальной малокомплектной школе, в частности - методику обучения решению задач на основе дифференцированного подхода к учащимся, позволило повысить качество знаний по предмету, степень самостоятельности, мотивацию и познавательную активность младших сельских школьников.
В Приложении представлены дидактические материалы двух уровней, направленные на формирование у учащихся общего умения решать задачи.
Основное содержание диссертации отражено в следующих публикациях:
1. Борисова И.В. Дифференцированный подход - основа качественного усвоения знаний. - Начальная школа № 7,2004, с. 44-46.
2. Борисова И.В. Обучение решению задач с использованием дифференцированного подхода в условиях сельской начальной малокомплектной школы // Народное образование в XXI веке. Доклады. - М., «Промтей» 2004. - С. 100-104.
3. Борисова И.В. Пути осуществления дифференцированного подхода на у роках математики в сельской начальной малокомплектной школе // Народное образование в XXI веке. Доклады. -М., «Промтей» 2004. - С. 96-100.
4. Иванов А.И., Луканкин Г.Л., Борисова И.В. Методические рекомендации использования педагогических технологий в обучении. //Модернизация системы педагогического образования Московской области.: Сборник трудов. - МГОУ, 2004. - с.201-244.
Подписано в печать 12.01.2005 г. Формат 60x84 1/16. Объем 1,62 печ. л. Тираж 100 экз. Заказ № 558. Бесплатно.
Издательство Рязанского областного института развития образования. 390023, г. Рязань, ул. Урицкого, д. 2а.
Отпечатано в научно-методическом отделе Рязанского областного института развития образования. 390023, г. Рязань, ул. Урицкого, д. 2а.
/е % \
í t v * í -2 2ФЕ3 2005
Содержание диссертации автор научной статьи: кандидата педагогических наук, Борисова, Ирина Валентиновна, 2005 год
Введение.
Глава I.
Глава II
§2. §з.
Глава III.
Анализ психолого - педагогической практики сельской начальной малокомплектной школы и дальнейшее совершенствование учебного процесса в школах данного типа
Состояние и перспективы развития сельской начальной малокомплектной школы. Психолого - педагогические особенности учебного процесса в сельской начальной малокомплектной школе
Выводы по первой главе Методическая система обучения младших школьников решению математических задач с элементами дифференцированного подхода в учебном процессе сельской школы. Методические подходы в обучении младших школьников обобщенным способам решения задач с использованием дифференцированного подхода. Концептуальные подходы к обоснованию методического обеспечения сельской малокомплектной школы.
Методика решения задач на равномерные процессы в начальной школе
Описание учебно - экспериментальных материалов, обеспечивающих дифференцированный подход в учебном процессе сельской школы. Выводы по второй главе
Внедрение в педагогическую практику методических идей дифференцированного обучения на примере решения задач на «равномерные процессы». Методика измерения влияния разноуровневых заданий на формирование общего умения решать задачи.
Анализ результатов экспериментального обучения учащихся III класса. Выводы по третье главе
Введение диссертации по педагогике, на тему "Формирование самостоятельной деятельности учащихся на основе дифференцированного обучения математике в условиях сельской начальной малокомплектной школы"
На современном этапе развития общества в России складывается новый тип человека - человека свободного в своих мыслях, поступках, хозяина земли. Идет переоценка ценностей, таких как земля, природа, история, национальная культура. В связи с этим в нашей стране происходит пересмотр системы образования.
В настоящее время сельская школа является единственным интеллектуально - культурным центром села. И следовательно она должна стать школой:
- демократической;
- развивающей творческие способности и самостоятельную деятельность ребенка;
- индивидуального и дифференцированного обучения;
- общения с окружающей природой и ее познания;
- здоровья и физического развития детей;
- высокой нравственности и этических норм поведения и др.
В рамках модернизации образования значительное внимание следует уделить сельской школе. Система образования должна создать в школе атмосферу доверия и радости, и тем самым способствовать развитию творческих способностей детей, стимулировать их учебную деятельность и познавательную активность.
В связи с этим определяются новые цели начального образования. Все они направлены на воспитание и развитие творческой личности ребенка на основе формирования его учебной деятельности, не снижая при этом программных требований к предметным знаниям, умениям и навыкам.
Психофизиологические особенности учащихся, разные уровни их умственных способностей закономерно требуют (для обеспечения эффективного обучения каждого ребенка или группы детей) неодинаковых условий обучения.
Чтобы не сдерживать темпы развития, необходимо индивидуализировать учебный процесс, т.е. сделать так, чтобы каждый ученик работал в своем темпе, в соответствии со своими способностями. Разным ученикам требуется разное время, разный объем, разные формы и виды работ, чтобы овладеть программным материалом.
В программе на этот счет сказано: «курс математики начальных классов дает большие возможности для осуществления индивидуального подхода к учащимся. Для этого целесообразно подбирать задания с учетом индивидуальных особенностей и способностей ученика. Так же как и при фронтальном обучении, индивидуальная самостоятельная работа нацеливает не только на отработку знаний, умений и навыков, но и используется как средство развития мышления, познавательной активности и самостоятельности учащихся» ([71], с. 76).
Но в настоящее время в педагогической системе не всегда учитываются эти различия. Проблема дифференцированного подхода не получила полного решения в системе развивающегося обучения, несмотря на существование большого числа работ, посвященных этой теме.
Анализ психолого - педагогической и методической литературы (Занков А.В., Выготский Л.С., Гальперин П.Я., Давыдов В.В., Рубинштейн С.Л., Суворова Г.Ф., Стрезикозин В.П., Колягин Ю.М., Моро М.И. и др.) и педагогической практики показали, что для полноценного осуществления дифференцированного подхода (ДП) к обучению необходимо сформировать у детей некоторые умения самостоятельной учебной деятельности; уделять внимание индивидуальной работе с младшими школьниками (особенно в условиях сельской школы, где одновременно обучаются дети разных возрастных групп, и при этом дети в каждом классе имеют разное физическое, психическое развитие, разные умственные способности к обучению, интересы и мотивы).
Идеи развивающегося обучения, активации мыслительной, творческой деятельности младших школьников, . с необходимостью повлекли за собой значительное расширение сферы применения самостоятельной работы учащихся на каждом этапе процесса обучения. Возникла потребность в поисках новых способов и форм организации самостоятельной работы учащихся и на этапе подготовки к восприятию новых знаний, и на этапе усвоения новых знаний». с.4).
Следует заметить, что в настоящее время недостаточно разработана методика дифференцированного обучения именно в сельской начальной малокомплектной (МК) школе, где 50-70 % учебного времени отводится на самостоятельную работу, а под самостоятельной работой понимается такая деятельность, при которой ученики проявляют высокую активность, инициативу, творчество, делают на уроках математики самостоятельные выводы. При этом самостоятельность понимается как ориентировка в новых условиях, использование знаний и умений в конкретных практических заданиях.
Если учитель вводит учащегося в учебную деятельность через планирование, исполнение и анализ проделанной работы, то выполняя эту деятельность при постоянно уменьшающейся помощи учителя, ребенок переходит из зоны ближайшего развития в зону активного развития (по идее JI.C. Выготского) в которой он уже учебную деятельность может выполнять вполне самостоятельно.
Объективные противоречия, которые существуют внутри методики обучения, вызваны в отставании в развитии и совершенствовании методов, средств и форм обучения от ведущих компонентов - целей и содержания обучения. Наличие данных противоречий - не позволяет поднять на должный уровень качество обучения в плане усвоения содержания существующего ныне курса математики в начальной школе. В плане новых подходов к обучению в сельской начальной школе самостоятельная деятельность может стать систематическим методом и принципом обучения в начальной школе. Формирование у учащегося учебной самодеятельности является основной формой учебной деятельности учащихся в учебно - воспитательном процессе будущей школы, где будут обучать общим приемам умственной деятельности по усвоению математических понятий.
Такой подход позволит определенным образом привести в соответствие все компоненты методики обучения с ее ведущими компонентами (целями и содержанием), разрешив тем самым некоторые противоречия внутри самой методической системы. Овладение общими приемами умственной деятельности дает возможность выпускникам начальной школы как можно быстрее и легче адаптироваться в условиях обучения в средней школе, обеспечивая тем самым преемственность начальной школы со средней.
Следовательно, учебный процесс начальной школы можно значительно улучшить, если использовать на уроках математики наряду с традиционными средствами обучения и дифференцированный подход, о чем не раз отмечалось М.И. Моро, Г.Ф. Суворовой, A.M. Пышкало, М.И Зайкиным и другими специалистами. «Суть дифференцированного подхода не в облегчении содержания материала, а в нахождении более простого пути, по которому ученик должен прийти к конечной цели, т.е. к самостоятельному выполнению задания». ([91], с.54).
Перечисленные проблемы определяют актуальность темы исследования, цель и задачи, которые мы для определенности рассматриваем не на всем материале курса математики для начальных классов, а на такой части его содержания, какой являются математические задачи. Задачи являются традиционно важной частью обучения математике. В этой связи учителя сельской начальной малокомплектной школы следует обеспечить более совершенной и эффективной методикой обучения математике младших школьников.
Таким образом, в теории и практике школьного образования одной из актуальных является избранная нами для исследования важная проблема, заключающаяся в поиске путей, средств и форм осуществления дифференцированного подхода в условиях сельской начальной малокомплектной школы, с целью формирования у учащихся самостоятельной деятельности.
В связи с этим целью нашего исследования является разработка теоретического обоснования, на базе которого можно будет создать новое методическое обеспечение для сельской начальной малокомплектной школы, которое позволит реализовать идеи дифференцированного подхода на уроках математики.
Объектом исследования мы избрали учебно - воспитательный процесс в сельской начальной малокомплектной школе, а предметом исследования - самостоятельную деятельность сельских школьников на уроках математики.
Постановка проблемы позволила сформировать следующую рабочую гипотезу: если формирование самостоятельности в сельской начальной малокомплектной школе станет систематическим методом обучения математике на основе идеи развивающего обучения, то это приведет к значительному усилению познавательных процессов у школьников. Все это должно незамедлительно сказаться на повышении качества обучения. И более полное и точное определение роли и места дифференцированного подхода в обучении младших школьников приведет к достижению высокого уровня усвоения математических навыков знаний, умений и навыков.
Исследование избранной проблемы потребовало решения ряда конкретных задач:
Проанализировать психолого-педагогическую литературу по проблеме исследования.
Определить теоретические положения развивающего обучения, на основе которых будут формироваться общие приемы учебной самостоятельной деятельности на уроках математики.
3.Разработать учебные дидактические материалы, соорентированные на самостоятельную деятельность младших школьников при решении математических задач с учетом дифференцированного подхода к учащимся.
4. Проверить эффективность разработанных методических средств на практике.
Методической базой исследования стоит идея гуманизации и демократизации образования, целостного системного подхода к педагогическому процессу; единства, взаимосвязи и взаимодействия объективного и субъективного, традиционного и инновационного; концепция личностно-ориентированного образования; теория развивающего обучения.
Теоретической основой исследования явились труды известных отечественных дидактов, ведущих представителей отечественной психологической науки: А.В.Занков, Л.С.Выготского, ПЛ.Гальперина, В.В.Давыдова, С.Л.Рубиншнейна и др.; труды исследователей обсуждаемой проблемы: Г.Ф.Суворовой, В.П.Стрезикозина, М.И.Моро, Н.Ф.Вапняр, Т.К.Чекмаревой, В.И.Кузнецова и др.
Для решения поставленных задач применялись следующие методы исследования:
- теоретический анализ поставленной проблемы на основе изучения психолого-педагогической, дидактической, методической литературы;
- педагогический анализ программы начальной школы, учебников по математике, методических пособий и дидактических материалов с целью совершенствования организации учебного процесса в сельской начальной малокомплектной школе при использовании дифференцированного подхода;
- диагностические методы (анкетирование, индивидуальные беседы, наблюдения);
- проведение эксперимента;
- количественной и качественный анализ полученных результатов исследования с использованием статистических методов.
В соответствии с поставленными задачами экспериментальная часть исследования проводилась в несколько этапов.
На I этапе (1999-2000 уч. год) осуществлялось изучение и анализ психолого-педагогической и методической литературы по проблеме дифференцированного подхода в обучении математике в условиях сельской начальной малокомплектной школы с целью выявления теоретических основ соответствующей методики обучения, изучалось состояние исследуемой проблемы в школьной практике, проводился констатирующий эксперимент.
На II этапе (2000-2001 уч. год) разрабатывались основные положения методики обучения математике, учитывая дифференцированный подход, содержание, план и методика эксперимента. Вся работа на втором этапе проводилась в форме поискового эксперимента.
Первые два этапа дали возможность уточнить теоретические и практические положения нашего исследования и перейти к III, основному этапу.
III этап (2001-2002 уч.год) - проводился в виде обучающего эксперимента. На этом этапе в малокомплектной школе Клепиковского района Рязанской области осуществлялось экспериментальное обучение младших школьников, уточнились и оформились основные результаты и выводы исследования. (Подготовлены экспериментальные материалы, разработана методика применения дифференцированного подхода в учебном процессе малокомплектной школы, разработана методика оценки влияния идей дифференцированного обучения на процесс формирования общего приема решения математических задач, анализировались типичные ошибки).
Научная новизна и значение исследования заключается в том, что новое поколение методического обеспечения для сельской начальной малокомплектной школы будет целенаправленно формировать самостоятельную деятельность школьников, учитывая при этом специфические особенности школ данного типа (где происходит обучение разновозрастных групп с малой наполняемостью классов и где в учебном процессе преобладает самостоятельная работа школьников), посредством научения общим приемам учебной деятельности по усвоению математических понятий: наблюдению, анализу, установлению аналогий, абстрагированию, синтезу, обобщению, индукции и др., включая в аппарат ориентировочные, исполнительские, контрольные и корректировочные действия, обучая детей действиям самоконтроля и оценки своей деятельности.
При разработке учебных материалов особое внимание уделялось ориентировочной деятельности учащихся при решении математических задач, где дети должны быть обеспечены такой информацией, в которой в наиболее обобщенном виде представлены правила и способы (ориентиры) того действия, которое предстоит усвоить учащимся.
Новизной исследования также является разработанные методические материалы для работы с детьми на ученическом и творческих уровнях, способствующие переходу в сельских школах на индивидуальное обучение младших школьников; созданная с диагностикой целей образования система контроля обучения (дневники успеваемости, где фиксируются результаты самостоятельных работ, контрольные работ, математических диктантов, выполнение творческих заданий).
Разработанная методика в будущем может быть использована при создании компьютерных обучающих программ.
Обоснованность и достоверность полученных результатов и выводов обеспечивается: полнотой изученного фактического материалы; набором соответствующих методов исследования; опорой на новейшие достижения психолого-педагогической науки; соответствием минимуму и стандартам образования; результатами применения методики в эксперименте и ее положительной оценкой учителями и методистами сельских малокомплектных школ.
Теоретическая значимость исследования заключается в том, что его результаты (доступность и высокая эффективность применения в учебном ^ процессе малокомплектной начальной школы дифференцированных заданий для самостоятельной работы, разноуровневые задания позволяют значительно усовершенствовать методику обучения математике младших школьников) могут быть использованы в дальнейших научных исследованиях по совершенствованию методической системы обучения младших школьников математике в школах данного типа. Исследование знакомит с основными теоретическими положениями методики дифференцированного подхода как средства обучения младших i#i школьников приемам решения задач с целью формирования самостоятельной деятельности учащихся сельских школ.
Практическая значимость исследования состоит в том, что методические рекомендации, в которых раскрываются общие приемы решения задач с использованием дифференцированного подхода к каждому ребенку, могут быть использованы учителями сельских школ в повседневной практике обучения младших школьников математике; обеспечивают преемственность в обучении со средней школой и могут являться фундаментом усвоения систематического курса математики; применение дифференцированного подхода в условиях сельской начальной малокомплектной школы позволило повысить уровень интеллектуального развития детей, а также изменить их отношение к предмету «математика».
На защиту выносятся следующие положения:
Теоретические основы использования дифференцированного подхода для формирования самостоятельной деятельности младших школьников в процессе обучения математике в условиях сельской начальной малокомплектной школы.
Основные положения методики применения дифференцированного подхода как средства обучения младших школьников приемам решения задач с целью формирования самостоятельной деятельности учащихся сельской школы.
Положительные результаты педагогического эксперимента, подтверждающие эффективность предложенной методики.
Апробация работы. Исследование проводилось в течении 4 лет (1999-2003 г.г.) в сельских малокомплектных школах Клепиковского района Рязанской области (Чебукинской, Колычевской, Задне-Пилевской, Макеевской). Основные результаты исследования обсуждались на методических семинарах учителей начальных классов.
Заключение диссертации научная статья по теме "Теория и методика обучения и воспитания (по областям и уровням образования)"
Выводы по П главе.
1. Становление и развитие структурных компонентов учебной деятельности в процессе обучения является одним из необходимых факторов и условий всестороннего развития личности детей в малокомплектной школе.
2. Для обеспечения эффективной организации учебного процесса в сельской малокомплектной школе необходимо применение особых методических материалов, к содержанию и форме которых предъявляются определенные требования.
3. Одно из ведущих мест в процессе обучения и воспитания младших школьников занимает арифметическая задача.
4. Учитывая трудности обучения решению задач на равномерные процессы и особенности учебно-воспитательного процесса в сельской малокомплектной школе, разработана экспериментальная методика решения задач с использованием идей дифференцированного обучения.
Глава 3. Внедрение в педагогическую практику методических идей дифференцированного обучения на примере решения задач на «равномерные процессы»
§1. Методика измерения влияния разноуровневых заданий на формирование общего умения решать задачи
Экспериментальное обучение в нашем исследовании преследовало две цели:
1. Создать с помощью применения дифференцированных (разноуровневых) заданий необходимые условия для успешного формирования умения решать задачи в учебном процессе малокомплектной школы в ходе самостоятельной работы.
2. Разработать основные положения методики оценки эффективности применения дифференцированных (разноуровневых) заданий при формировании у младших школьников умения решать задачи.
Эксперимент проводился в несколько этапов: констатирующий, поисковый и обучающий.
I. Констатирующий эксперимент (1999-2000 учебный год) проводился в Клепиковском районе Рязанской области. Он носил характер наблюдений за педагогической практикой малокомплектных школ, где учителя применяли различные приемы дифференцированного обучения, разработанные Г.Ф. Суворовой, М.И. Моро, Н.Ф. Вапняр. [88], [90].
Однако, недостаток современных средств обучения в сельской школе, введение новых программ и учебников, изменение содержания учебных курсов привело к тому, что все дидактические материалы, разработанные ранее, не находят должного применения в современном учебном процессе сельской МК школы. Происходит резкий спад применения дифференцированных дидактических пособий в учебном процессе.
Кроме того, констатирующий эксперимент показал, что применение дифференцированных заданий является жизненно - важной и необходимой задачей, требующей теоретического и практического решения.
Таким образом, констатирующий эксперимент подтвердил актуальность нашего исследования и послужил обоснованием к проведению поискового эксперимента.
II. Поисковый эксперимент (2000-2001 учебный год) осуществлялся при разработке модели диагностики учащихся, разработке и проведении пробных, вариативных уроков математики с использованием идей дифференцированного обучения; создание экспериментальных материалов для учащихся в виде разноуровневых заданий, совершенствовании методических рекомендаций для учителя, обработке первых результатов, и т.д.
Проведение констатирующего и поискового экспериментов позволило создать теоретическую и практическую базу для обучающего эксперимента.
III. Обучающий эксперимент (2001-2002 учебный год)
В нашем исследовании на этапе обучающего эксперимента рассматривались вопросы: а) связанные с обеспечением экспериментального учебного процесса дифференцированными дидактическими пособиями, которые способствовали бы реализации наилучшим образом условий успешного формирования общего умения решать задачи; б) касающиеся методики измерения и оценки качества и эффективности применения идей дифференцированного обучения на уроках математики.
Экспериментальную базу нашего исследования на данном этапе работы составили малокомплектные школы Крепиковского района Рязанской области: Тюковская (учителя М.А. Липатова, М.В. Борисова, И.В. Борисова), Чебукинская (С.Е. Милорадова), Макеевская (Е.П. Майорова), Колычевская (JI.B. Бахарева), Задне-Пилевская (JI.B. Криворотова).
Для оптимального функционирования в учебном процессе малокомплектной школы таких условий успешного формирования общего умения решать задачи, как целенаправленость действий - знание последовательности действий, умения выделить среди них главное; темп продвижения; контроль и самоконтроль; правильное распределение упражнений во времени и их разнообразие; наличие положительного «подкреплени» и активного интереса, - нами была отобрана система дифференцированных заданий.
Методический аппарат учителя пополнился разработанными нами методическими рекомендациями, которые содержали, главным образом, разноуровневые задания для самостоятельного решения задач учащимися.
В основу методики оценки эффективности экспериментального обучения были положены: уровень сформированности самостоятельной деятельности учащихся, умение выделять основные этапы решения задачи (восприятие и осмысление задачи, поиск плана решения, выполнение плана решения; проверка решения, формулировка ответа на вопрос задачи, исследование решения), а также психологические критерии сформированности вычислительных навыков: осознанность, безошибочность, прочность, гибкость, вычислительная скорость, осознанность умения решать задачи проверялась в беседах с учениками, задавая вопросы, мы выясняем соответствие между изученными методическими приемами и темы, которые учащиеся применяли в своей практической работе; знание основных этапов решения задачи; применение умения решать задачи в сложной или незнакомой ситуации и т.д.
Безошибочность решения задач каждым школьников экспериментальных классов фиксировалась - в II классе по 5 параметрам (видам заданий и упражнений) на протяжении 170 уроков.
Мы вели непрерывное (ежедневное) наблюдение за экспериментальным обучение. В этой связи, мы считаем, что наиболее достоверно можно оценить эффективные и качественные изменения в экспериментальной педагогической практике только тогда, когда ведутся пролонгированные наблюдения за динамикой формирования составных элементов экспериментального процесса. Среди критериев эффективности обучения главным считается критерий, позволяющий наблюдать за процессом достижения тех или других результатов учебной деятельности: «. критерий (степени полноты и прочности усвоения школьниками знаний), хотя и очень важный, оказывается внешним по отношению к самому процессу усвоения. Это побуждает к поискам других критериев, по которым можно судить не только о результате, но и о процессе его достижения», (.4.9. с. 10)
В данном случае, мы наблюдаем за динамическим процессом формирования задач в III классе. Такие пролонгированные наблюдения представляют возможность регистрировать прочность умения решать задачи с течением времени, его гибкость, перенос и совершенствование.
В статистических таблицах фиксировались ошибки, допущенные учащимися (каждым учеником) при выполнении того или другого вида упражнений, а с этой целью в экспериментальном классе велся «Дневник щ успеваемости», который представляет из себя следующее:
Ф.И.ученика Математиче- Самостоя- Контроль- Творчесп/п параметры ский диктант тельная ная работа кие и работа занимательные задания
1 2 3 4 5 6
1.
2.
3.
4.
5.
Анализируя экспериментальные данные по каждому параметру, мы одновременно рассматривали:
Диаграммы упражнений определенного вида.
Содержание разноуровневых заданий, соотнося их к задачам данного вида.
Типичные ошибки, встречающие при выполнении упражнений.
В ходе экспериментальной проверки разработанных разноуровневых заданий удалось выделить и найти приемы, дающие наибольший эффект при осуществлении руководства самостоятельной работы учеников в условиях малокомплектной школы.
Первая группа включает в себя приемы, обеспечивающие доступность задания, для класса в целом; во вторых группу входят приемы, направленные на развитие творческих возможностей учащихся.
Известно, что доступность задания часто обеспечивается с помощью дополнительных устных указаний учителя. Но до недавнего времени еще было выяснено, каким образом заменить устные указания письменными (в тех случаях, когда их нет в учебниках или они нуждались в уточнениях, дополнениях и т.д). Поэтому необходимо было определить, какие письменные указания целесообразны, найти наиболее приемлемую для младших школьников форму таких указаний.
Исследование показало: для того, чтобы класс смог выполнить задание самостоятельно в условиях, когда ученики не смогут получить дополнительных устных указаний в ходе работы, необходимы письменные указания, касающиеся не только существа задания, но и его оформления.
Для разъяснений по существу выполнения задания эффективности оказались предписания алгоритмического вида.
При составлении предписаний учитывались не только общие требования, сформированные психологами, но и уровень навыков чтения у младших школьников. Особое внимание, поэтому мы обращаем на лаконичность и четкость указаний, входящих в состав предписаний.
В ходе исследования выяснилось также, что для предупреждения часто возникающих у детей вопросов, касающихся оформления работы, необходимы соответствующие специальные письменные указания, данные в виде краткой инструкции. При возможно большей краткости такая инструкция должна содержать все необходимое и достаточное для того, чтобы ученик смог самостоятельно выполнить требуемые записи.
Эксперимент был проведен на основных этапах процесса обучения: при объяснении нового материала, при закреплении изученного, при тренировочных упражнениях.
Показателями эффективности экспериментальных пособий являлось качество и глубина знаний, количество усвоенной информации на основных этапах урока, отдельном уроке, по проделанной теме, за учебную четверть, полугодие, год.
Для выявления этих показателей во время обучения велись наблюдения за активностью детей, занятостью ими учебной работой, за самопроверкой ими своей деятельности.
§2. Анализ результатов экспериментального обучения учащихся III класса
Экспериментальное обучение проводилось в Тюковской школе, Клепиковского района, Рязанской области под руководством ведущего научного сотрудника Института общего образования Министерства образования России кандидата педагогических наук В.И. Кузнецова.
Мы предположили, что если в своей педагогической практике будем использовать методические приемы дифференцированного подхода к каждому ученику с учетом их индивидуальных способностей, интересов обучения не только будет соответствовать обязательному минимуму содержания обучения, учебным стандартам для школ России, но и будет значительно выше 60%.
В экспериментальной работы использовались следующие учебные материалы: программа по математике I-IV, учебник по математике автора
М.И. Моро и др., тетради по математике, задачники по математики В.И. Кузнецова, различные сборники занимательных заданий других авторов. Приведем несколько примеров.
О подготовленности учащихся в начале учебного годя можно судить по срезовым работам, проведенным в начале учебного года. Таблица 1
Фамилия, имя Математи- Самостоя- Контроль- Творчесученика чески тельная ная работа кие п/ диктант работа (оценка) задания п (оценка) (оценка) (оценка)
1. Анохина Наталья 4 5 3 4
2. Журавлев Иван 3 3 2 2
3. Кирюхин Николай 4 4 4 4
4. Старков Анатолий 2 3 2 2
5. Хритюхина Елена 3 3 2 2
Анализ срезовых работ показал, что рассматривается на данном этапе ошибки учащихся типичны и сводятся к следующим: а) учащиеся испытывают затруднения при сложении и вычитании однозначных числе с переходом через десяток: 15-8,9+4; б) затрудняются в воспроизведении числе и в прямом и обратном направлении, назывании числа, следующего за данным при счете, предшествующего ему и т.д.; в) при решении простых задач испытывают затруднения в выборе знака («плюс» или «минус») арифметического действия; в записи краткого условия задачи; г) при самостоятельном решении задач затрудняются в поиске способа решения составлении плана решения задачи.
Учитывая типичные ошибки и индивидуальные особенности учащихся мы использовали дифференцированные задания для каждого ученика.
Так в течение учебного года было проведено 38 математических диктантов, 28 самостоятельных работ, 12 контрольных работ. Беседы проводились каждый урок; творческие и занимательные задания давались при работе со всем классам, а также фрагментарно в контрольные и самостоятельные работы.
Предлагая задания такого характера мы не рассчитывали, что все учащиеся смогут самостоятельно их выполнить. Однако эксперимент показал, что творческие и занимательные задания стимулировали познавательную активность менее продвинутых учеников. Ребята, потратившие определенные усилия на творческие задания охотно принимали участие в обсуждении этих заданий, с интересом выслушивали объяснения приемов их решения даже в тех случаях, когда они этих приемов сами найти не смогли.
Цель математических диктантов - проверка знаний математической терминологии.
Динамика успешности обучения отражена в диаграммах 1-5.
При анализе результатов обучения Анохиной Натальи (диаграмма 1)
Диаграмма 1
6 с
О А iffiim \\/жж/
Ч О о о
Л
I п и Л ! I I I I I I I I I I I ! г- ^ Г^ О СО I J I I I I „ „Lo '"pa 5с t— t— CNCNJCNJCOCOCO >г
Математический диктант Контрольная работа —•— Самостоятельная работа —Ж-Творческие и занимательные задания мы видим, что в начале учебного года по всем параметрам ученица имела нестабильные результаты - оценки за работы колебались между «3» и «5». Но при этом ученица владела некоторыми приемами самостоятельной работы, имела неплохие знания математических терминов. Несмотря на ошибки при выполнении работ (причины ошибок были выявлены в ходе индивидуальных бесед; главное из них -невнимательность) с ученицей имелась возможность работать на творческом уровне: у девочки хорошо развито логическое мышление. В ходе индивидуальных бесед выявлялось ход выполнения задания, затруднение при его выполнении.
В ходе работы Наталье предлагалось задания ученического уровня, но очень быстро эта ученица перешла на творческий уровень обучения. И в результате - к концу учебного года уровень успеваемости повысился и оценки стабилизировались: за математические диктанты - почти все «5», за самостоятельные работы - «4» и «5», за контрольные работы - «4».
К концу учебного года девочка овладела в полной мере навыками самоконтроля.
Анализ результатов обучения Кирюхина Николая представлен на диаграмме 2.
Начало учебного года характеризуется показателями чуть выше среднего. Были выявлены причины ошибок при выполнении работ -ученик иногда не выполнял домашние задания, часто недоучивал заданный материал. В ходе индивидуальных бесед оказывалась помощь в поиске способов решения задач, показывались разные варианты выполнения задания. В итоге - ученик стал предлагать рациональные способы решения задач, заинтересовался математикой как наукой. В течение учебного года с этим учеником проводилась работы сначала на ученическом уровне, а затем появились возможности работы на творческом уровне. Мальчик с успехом решал занимательные задачи, предлагал свои варианты условий заданий. В результате применения разноуровневых, а часто и индивидуальных, заданий качество обучения у Николая повысилось на 1 балл.
Качество обучения Хритохиной Елены (диаграмма 3) в начале учебного года было ниже среднего. Елена не владела приемами самостоятельной деятельности, затруднялась в выборе способа решения задачи и ее анализе, не знала многих случае табличного умножения. В ходе индивидуальных бесед оказывалась помощь в решении задач, и выявились причины ошибок. Были найдены пути дифференцированного подхода: с этой ученицей велась работа на творческом уровне в течение всего учебного года. К концу учебного года Елена овладела некоторыми навыками самоконтроля, могла самостоятельно решать многие виды задач. В целом по всем параметрам качество обучение повысилось на 1 балл.
Результаты нашего исследования по повышению качества обучения Журавлева Ивана представлены на диаграмме 4.
Из этой диаграммы видно, что в начале учебного года этот ученик имел невысокие показатели качества обучения: контрольные и творческие задания - 2 балла, математический диктант и самостоятельная работа - 3 балла. К концу учебного года данный ученик не достиг высоких результатов обучения, но в его работах стали появляться положительные оценки (см. «самостоятельная работа №16,24», «математический диктант №20,24») и по всем параметрам стало больше «троек», чем «двоек».
В ходе экспериментальной работы мы выделили типичные ошибки у данного ученика: он путал понятия «увеличить в» - «увеличить на», «уменьшить в», - «уменьшить на», затруднялся в самостоятельном анализе задачи и поиске способов решения. Также этот ученик не смог самостоятельно записать краткое решение задачи.
Учитывая типичные ошибки ученику предлагалось дифференцированные задания ученического уровня и оказалась помощь в ходе индивидуальных бесед. К концу учебного года ученик мог самостоятельно решить некоторые задачи ученического уровня овладел некоторыми навыками самостоятельной работы.
Качество обучения Старкова Анатолия (диаграмма 5) в начале учебного года: параметры «математический диктант», «контрольная работа», «творческие и занимательные задания» - 2 балла, «самостоятельная работа» - 3 балла. Были выделены типичные ошибки, которые допускал этот ученик. Они, в основном, такие: затруднения в самостоятельном анализе и поисках способов решения задачи составлении краткого условия; выборе знака арифметического действия. В ходе экспериментальной работы результаты обучения стало меньше. Успехи достигнуты за счет использования разноуровневых заданий (ученический уровень) и индивидуальной помощи со стороны учителя в ходе выполнения заданий.
Анализ полученных экспериментальных данных по параметру «Контрольная работа», у всех учащихся (см. диаграммы 1-5) показал, что успеваемость по данному параметру несколько ниже, чем по другим параметрам. Объясняется это тем, что тесты контрольных работ не содержали алгоритмических предписаний, данных для самоконтроля.
В начале учебного года учащиеся получили одинаковые контрольные работы. В ходе экспериментальной работы мы пришли к мысли о разработке дифференцированных контрольных работ. Все варианты были равносильны, хотя в разных вариантах допускались задания с несколькими формулировками. Каждый вариант охватывал все проверяемые умения и навыки, что незамедлительно сказалось на качестве обучения.
Результаты нашего исследования по параметру «Самостоятельная работа» (см. диаграммы 1-5, таблица 1 и таблица 2) практически не изменились в конце года по сравнению с началом учебного года. Объясняется это тем, что учащиеся получили большую долю самостоятельности в выполнении заданий, не в полной мере владея приемами самостоятельной деятельности. В начале учебного года многие учащиеся выполняли задания самостоятельной работы с участием учителя. В дальнейшем результаты экспериментальной работы улучшились, т.к. были найдены пути дифференцированного подхода к каждой группе учащихся. Ученики могли вполне самостоятельно работать с данными заданиями.
Введение в учебный процесс разноуровневых заданий особенно положительно сказалось на этапе повторения и закрепления, а также при переходе к изучению новой темы. И вся учебная деятельность в группе учащихся экспериментального класса приобрела более стабильный вид.
Все это, безусловно, говорит в пользу экспериментального обучения, положительные результаты которого достигнуты, главным образом, за счет применения на уроках математики алгоритмических предписаний, которые нашли свое место в разноуровневых дидактических заданиях.
Результаты срезовых работ в конце учебного годя выглядят следующим образом:
Заключение
На основе анализа современной психолого-педагогической литературы, теории и практики сложившейся методики обучения младших школьников математики выявлены особенности и существо процесса формирования общего умения решать задачи, условия и критерии успешного его формирования, определены возможности совершенствования этого процесса при широком использовании дифференцированного подхода в педагогической практике.
2. Определены теоретические положения развивающего обучения: рассмотрен тип развивающего обучения, который соотносим с младшими школьным возрастом и наделен прежде всего на развитие у младших школьников теоретического мышления, на развитие у них творчества как основы личности.
3. Разработаны и проверены в опытном обучение дидактические материалы, соориентированные на самостоятельную деятельность младших школьников при решении математических задач с учетом дифференцированного подхода к учащимся.
Выявлены особенности учебного процесса в условиях сельской школы, организации самостоятельной работы на уроках, обучая одновременно математике школьников двух, трех классов.
5. Разработана и экспериментально проверена методика применения дифференцированных заданий, включающая систему дидактических материалов для учащихся, методические рекомендации для учителя, обеспечивающая использование разноуровневых заданий на уроках математики в сельских малокомплектных школах. Данная методика включает наиболее эффективные методические приемы работы в условиях дифференцированного подхода на различных этапах урока. Методическая система раскрывает возможности разнообразных сочетаний дифференцированных заданий с традиционными средствами обучения -учебником, тетрадями с печатной основой и другие сочетания.
6. Разработана методика оценки влияния разноуровневых заданий на формирование общего умения решать задачи. В основе этой методики лежат пролонгированные наблюдения за процессом формирования общего умения решать задачи в условиях самостоятельной деятельности учащихся. Такая методика оценки результатов эксперимента позволила проводить измерения количественных сдвигов в ходе выполнения учащимися упражнений различных видов.
Выявлено, что применение разноуровневых заданий и методической системы, предназначенных для работы в условиях сельской малокомплектной школы, повысили уровень умения решать задачи. Анализ результатов экспериментальной работы показал, что сформированное умение решать задачи характеризуется осознанностью, безошибочностью действий, прочностью, гибкостью навыков и широкими возможностями его совершенствования.
Таким образом, теоретические выводы и методические рекомендации, полученные в результате нашего исследования, позволяют щ усовершенствовать методику дифференцированного подхода в учебном процессе при обучении математике младших школьников.
Список литературы диссертации автор научной работы: кандидата педагогических наук, Борисова, Ирина Валентиновна, Москва
1. Актуальные проблемы методики обучения математике в начальных классах (Под ред. М.И. Моро, A.M. Пышкало.) М.: Педагогика, 1977. -248 с.
2. Анисин Н.М. Большие заботы малокомплектной школы: (Портрет сел. учительницы): Кн. для учителя.- М.: Просвещение, 1986 112 с.
3. Анкудинова Т. Г. Работа над текстовой задачей. Начальная школа, 1997, №7, с. 42-43.
4. Арнольд И.В. О задачах по арифметике. Математика в школе, 1995, № 5, с. 2-7.
5. Артемов А.К. Приемы организации развивающего обучения. -Начальная школа, 1995, № 3, с. 35-39.
6. Бантова М.А., Бельтюкова Г.В. и др. Методика преподавания в начальных классах. М.: Просвещение, 1984. - 192 с.
7. Белова Т.М. Работа по системе развивающего обучения. Начальная школа, 1996, № 12, с. 51-54.
8. Богоявленский Д.Н., Менчинская Н.А. Психология усвоения знаний в школе. М.: АПН РСФСР, 1959. - 403 с.
9. Болтянский В.Г. К проблемам дифференциации школьного математического образования. Математика в школе, 1988, № 3, с. 9-13
10. Борисова И.В. Дифференцированный подход осное-а качественного усвоения зн<зим&-Начальная школа, 2004, № 7, с. 44-46.
11. Борисова И.В. Обучение решению задач с использованием дифференцированного подхода в условиях сельской начальной малокомплектной школы. В сб. /Народное образование в XXI веке /- М. МГОУ, 2004 г., Вып. 3 С.100-104.
12. Борисова И.В. Пути осуществления дифферецированного подхода на уроках математики в условиях СНМК школы. В сб. /Народное Образование в XXI веке / М. МГОУ, 2004 г., Вып. 3 - С.96-100.
13. Борисова JI.Г. Сельская школа. Проблемы и перспективы. М.: Знание, 1978.-47 с.
14. Бородулько М.А., Стойлова Л.П. Обучение решению задач и моделирование. Начальная школа, 1996, № 8, с. 26-32.
15. Валеева И.А. Особенности умственных действий младших школьников при решении эвристических задач. Начальная школа, 1996, № 33, с. 37-44.
16. Волкова С.И., Столярова Н.Н. Тетрадь с математическими заданиями № 1 для 3 класса четырехлетней начальной школы: курс «Развитие познавательных способностей детей на уроках математики» 2-е изд. - М.: Просвещение, 1995, - 64 е.: ил.
17. Волкова С.И., Столярова Н.Н. Развитие познавательных способностей детей на уроках математики. Начальная школа, 1992, № 7-8, с. 27-32.
18. Выготский Л.С. Избранные психологические исследования. Мышления и речь. Проблемы психологического развития ребенка. (Под ред. А.Н. Леонтьева и А.Р. Лурия) М.: Изд-во АПН РСФСР, 1956. - 519 с.
19. Гальперин П.Я. Основные результаты исследований по проблеме «Формирование умственных действий и понятий» М.: МГУ, 1965. - 52 с.
20. Гальперин П.Я. Психология мышления и учение о поэтапном формировании умственных действий. Сб. исследование мышления в Советской психологии: М.: Наука, 1966. - 284 с.
21. Давлетшина А.А. Изучение индивидуальных особенностей младших школьников. Начальная школа, 1993, № 5, с. 10-13.
22. Давыдов В.В. Виды обобщения в обучении. М.: педагогическое общество России, 2000. - 480 с.
23. Давыдов В.В. Психологическое развитие в младшем школьном возрасте. В кн.: Возрастная и педагогическая психология. (Под ред. А.В. Петровского) М.: Просвещение, 1973, с. 66-97.
24. Данюшенков B.C., Гилязова О.Г., Зайкин М.И. Технологические подходы к обучению учащихся в сельской школе. Киров, 2000.
25. Дубровина И.В. Об индивидуальных особенностях школьников. М.: Знание, 1975.-152 с.
26. Зайкин М.И. Избранные вопросы теории обучения. Арзамас, 2003.
27. Занков JI.B. Избранные педагогические труды. М.: Педагогика, 1994.-424 с.
28. Занков JI.B. Развитие учащихся в процессе обучения. М.: Изд-во АПН РСФСР, 1963. - 288 с.
29. Земцова Л.И., Сумкова Е.Ю. методики оценки эффективности учебно-воспитательного процесса. Часть I. М.: Изд-во НИИ школ МП РСФСР, 1987.-104 с.
30. Зубов В.И., Шикова Р.Н. Предупреждения ошибок учащихся при обучении решению текстовых задач. Начальная школа, 1994, № 1, с. 6869.
31. Иванов О. А. Обучение поиску решения задач. математика в школе, 1997, № 6, с. 47-49.
32. Ильясов И.Н. Система эвристических приемов решения задач. М.: Просвещение, 1992. - 352 с.
33. Ирошников Н.П. Обучение математике в малокомплектной школе. -М.: Просвещение, 1988. 288 с.
34. Кабанова Меллер Е.Е. Формирование приемов умственной деятельности и умственное развитие учащихся. М.: Просвещение, 1968. -320 с.
35. Келбакиани В.Н. Контуры дифференциации в преподавании математики. — Математика в школе, 1990, № 6, с. 13-14.
36. Коннова В.А. Задание творческого характера на уроках математики. -Начальная школа, 1995, № 12, с. 55-57.
37. Концепция реструктуризации школы в сельской местности. -учительская газета, 2002, 17 декабря.
38. Кривошеев В.Ф., Кузнецов В.И., Фоминых Б.И. Интенсификация учебного процесса в сельской малокомплектной начальной школе. -Начальная школа, 1987, № 5, с. 32-34.
39. Кривошеев В.Ф. Роль и место начальной школы в системе базового и профильного образования. Начальная школа, 1992, № 7-8.
40. Крутецкий В.А. Основы педагогической психологии. М.: Просвещение, 1972. - 180 с.
41. Крутецкий В.А. Психология математических способностей школьников. М.: Просвещение, 1968. - 432 с.
42. Кузнецов В.И. Задачник с решениями, подсказками и ответами: Учебное пособие по математике для учащихся 3-4 классов. М.: АСТ-ПРЕСС, 1998.-96 е.: ил.
43. Кузнецов В.И. Задачник с решениями, подсказками и подглядками для решения наиболее трудных задач 3-4 классов начальной школы. М.: Самоцвет, 1995.-128 с.
44. Кузнецов В.И. Использование тетрадей на печатной основе по математике в учебном процессе сельской начальной малокомплектной школы. Начальная школа, 1992, № 4.
45. Кузнецов В.И. К вопросу о решении математических задач. -Начальная школа, 1999, № 5, с. 27-34.
46. Кузнецов В.И. Методика решения задач на равномерные процессы в начальных классах. Пособие для учителя. М.: Ротапринт НИИ школ МП РСФСР, 1974.-26 с.
47. Кузнецов В.И. и др. Нужны ли специальные учебники для малокомплектных школ? Начальная школа, 1989, №11.
48. Кузнецов В.И. Перспектива начальной малокомплектной школы. -Начальная школа, 1986, № 4.
49. Кузнецов В.И. и др. Теоретические основы построения курса учебных предметов для начальных классов малокомплектных школ. Начальная школа, 1989, № 1.
50. Кузнецов В.И. Тетрадь по математике № 1 для 3 класса четырехлетней начальной школы. М.: Светоч, 1998. - 48 с.
51. Кузнецов В.И. Тетрадь по математике № 1 для 4 класса четырехлетней начальной школы. М.: Светоч, 1998. - 48 с.
52. Курбатов И.Д., Янковская Н.А., Мельникова И.А. Преемственность в разработке и применении средств обучения. В кн. «Преемственность в обучении математике. Пособие для учителя». - М.: Просвещение, 1978, с. 97-108.
53. Лецких JI.A. Развивающий канон в системе Эльконина Давыдова -Репкина - Начальная школа, 1997, № 3, с. 42-44.
54. Моблинская А.А. Учителю о психологии младшего школьника. Пособие для учителя. М.: Просвещение, 1977. - 224 с.
55. Мялькина А.Г., Панкрашкина Н. Ю. Об организации индивидуальной деятельности учащихся. математика в школе, 1997, № 6, с. 29-31.
56. Малиновская А.Я. Управление самостоятельной деятельностью учащихся на уроке. Начальная школа, 1984, № 5.
57. Математика: Учеб. для 3 кл. четырехл. нач. шк. / М.И. Моро, М.А. Бантова, Г.В. Белыпикова и др. 4-е изд. - М.: просвещение, 2001. - 144 е.: ил.
58. Математика: Учеб. для 4 кл. четырехл. нач. шк. / М.И. Моро, М.А. Бантова, Г.В. Белыпикова и др. 4-е изд. - М.: просвещение, 2001. - е.: ил.
59. Методические рекомендации к теме «практический и занимательный материал к урокам и внеклассным занятиям по математике в начальных классах». Сост.: Л.Н. Бахарева, С.В. Иванов, С.А. Саянсиков. Рязань. РГПИ им. С.А. Есенина, 1990. - 44 с.
60. Миндюк М.Б. Составление и использование разноуровневых заданий для дифференцированной работы с учащимися. Математика в школе, 1991, №3, с. 12-15.
61. Мокрушина О.А., Дмитриева О.И. Математика 4 класс. Поурочные разработки к учебнику М.И. Моро, М.А. бахметова и др. М.: Вано, 2003. 400 с.
62. Моро М.И., Вапняр Н.Ф. Карточки с математическими заданиями и играми для 3 класса 4-летней нач. школы: пособие для учителя. 3-е изд. -М.: Просвещение, 1993. 64 с.
63. Никола Г., Талызина Н.Ф. Формирование общих приемов решения арифметических задач. В кн.: Управление познавательной деятельностью учащихся. М.: Педагогика, 1972. - 320 с.
64. Обучение в малокомплектной сельской школе: Кн. для учителя / Г.Ф. Суворова, Р.Н. Князева, K.JI. Лисова и др.; Под ред. Г.Ф. Суворовой. М.: Просвещение, 1990. - 159 с.
65. Обучение в 3 классе. Пособие для учителя четырехкл. нач. шк. В 2 кн. Кн. 2 / М.И. Моро, М.А. Бантова, Г.В. Бельпиокова и др.; Под ред. Ж.П. Данилова. 2-е изд. - М.: Просвещение, 1988. - 432 с.,: ил.
66. Обучение в 4 классе. Пособие для учителя четырехкл. нач. шк. В 2 кн. Кн. / М.И. Моро, М.А. Бантова, Г.В. Бельтюкова и др.; Под ред. Ж.П. Данилова. 2-е изд. - М.: Просвещение, 1988. - 432 с.,: ил.
67. Окунев А.А. Размышления о целях и содержании дидактических материалов. Математика в школе, 1997, № 6, с. 44-47.
68. Основные вопросы начального обучения. (Под ред. А.С. Пчелко). -М.: Изд-во академии пед. наук, 1963. 289 с.
69. Особенности учебно-воспитательного процесса в начальной малокомплектной школе. Учебное пособие. Под ред. И.И. Саковича. -Горький: РГПИ им. М. Горького, 1984. 85 с. с табл.
70. Пойа Д. Как решать задачу. М.: Учпедгиз, 1959. - 350 с.
71. Программы образовательных учреждений. Начальные классы (1-4). В двух частях. Часть 1. М.: Просвещение, 2001. - с.
72. Пчелко А.С. О преподавании арифметики в начальной школе. М.: Академия педагогических наук РСФСР, 1949. - 72 с.
73. Рачинский С.А. Сельская школа: Сб. статей /сост. Л.Ю. Стрелкова. -М.: Педагогика, 1991. 176 с.
74. Рубинштейн С.Л. Основы общей психологии.: В 2 т. Т1 М.: Педагогика, 1989. - 488 с.
75. Рубинштейн С.Л. Основы общей психологии.: В 2 т. Т2 М.: Педагогика, 1989. - 328 с.
76. Рудакова Е.А., Царева С.Е. Разбор задачи с использованием графических схем. Начальная школа, 19921, № 11-12, с. 32-35.
77. Рыбников К.А. К вопросу о дифференциации обучения. Математика в школе, 1988, № 5, с. 16-19.
78. Салмина Н.Г., Сехина В.П. Обучение математике в начальной школе (на основе экспериментальной программы, Под ред. П.Я Гальперина). -М.: Просвещение, 1975. 371 с.
79. Самостоятельная работа учащихся на уроках в малокомплектной школе. (Под ред. М.А. Мельникова A.M. Пышкало). М.: Педагогика, 1974.-200 с.
80. Семакина Л.И., Сбоева Н.А. Математика 2 класс: Поурочные разработки к учебнику М.И. Моро, М. А. Байтовой и др. М.: Вако, 2003. -416с.
81. Совершенствование обучения и воспитания учащихся в начальных классах малокомплектных школ. Материалы Всесоюзного семинара (Брест, 1985 г.). Под ред. Н.Г. Огурцова, Г.М. Савельевой, А.А. Креоковой. Минск: НИИП МП БССР, 1985. - 104 с.
82. Средства обучения и методика их использования в начальной школе. Кн. для учителя. (Под ред. Г.Ф. Суворовой). М.: Просвещение, 1990. -160 с.
83. Стрезикозин В.П. Актуальные проблемы начального обучения. Пособие для учителя. М.: Просвещение, 1976. - 207 с.
84. Стрезикозин В.П. Организация занятий в малокомплектной начальной школе (пособие для учителя). М.: Просвещение, 1968. - 68 с.
85. Стрезикозин В.П. Организация процесса обучения в школе. М.: Просвещение, 1968. 245 с.
86. Стрезикози В.П. Урок в сельской малокомплектной школе. М.: Просвещение, 1972. - 230 с.
87. Суворова Г.Ф. Индивидуальный подход к учащимся на уроке. -Начальная школа, 1987, с. 56-58.
88. Суворова Г.Ф., Вапняр Н.Ф., Аквилева Т.Н. Методические рекомендации. Приемы обучения в специфических условиях малокомплектной школы. М.: Ротапринт НИИ СССР, 1979. - 40 с.
89. Суворова Г.Ф. Обновление содержания образования в сельской школе. Начальная школа, 1996, № 11, с. 60-67.
90. Суворова Г.Ф. Особенности индивидуального подхода при обучении. Начальная школа, 1986, №11.
91. Суворова Г.Ф. Приемы индивидуализации домашних заданий учащихся. Начальная школа, 1987, № 6, с. 54-55.
92. Суворова Г.Ф. Реализация индивидуального подхода к учащимся. -Начальная школа, 1987, № 1, с. 57-59.
93. Суворова Г.Ф. Совершенствование учебного процесса в малокомплектной начальной школе; Науч.-исслед. ин-т содержания и методов обучения Акад. пед. наук СССР. М.: Педагогика, 1980. - 88 с.
94. Суворова Г.Ф. Чему учить сельского школьника. Начальная школа, 1991, № 11, с. 37*-40.
95. Талызина Н.Ф. Формирование познавательной деятельности младших школьников: Кн. для учителя. М.: Просвещение, 1988. - 175 с.
96. Тимощук М.Е. О дифференцированной помощи учащимся при решении задач. Математика в школе, 1993, № 2, с. 12-14.
97. Типичкина Е.А., Крючкова И.В. Виды самостоятельных работ на уроках математики. Начальная школа, 1996, № 5, с. 16-19.
98. Утеева Р.А. Дифференцированные формы учебной деятельности учащихся. Математика в школе, 1995, № 5, с. 32-36.
99. Уткина Н.Г., Уметина Н.В., Юдачева Т.В. Дидактический материал по математике. 3 класс (1-4). М.: АРКТИ, 2001. - 96 е.: ил.
100. Уткина Н.Г., Уметина Н.В., Юдачева Т.В. Дидактический материал по математике. 4 класс (1-4). М.: АРКТИ, 2001. - 96 е.: ил.
101. Учебно-воспитательная работа в малокомплектной школе (Сост. и отв. ред. И.В. Прокопович). -М.: Просвещение, 1973. 144 с.
102. Ужинский К.Д. Избр. пед. соч.: В 2-х т. М.: Изд-во АПН РСФСР, 1953, т. 2 -540 с.
103. Фридман JI.M. Методика обучения решению математических задач. -Математика в школе, 1991, № 5, с. 59-63.
104. Царева С.Е. Обучение решению задач. Начальная школа, 1997, № И, с. 93-99.
105. Целищева И., Зайцев С. Как помочь каждому ученику самостоятельно решать текстовые задачи. Начальная школа, 2001, № 18.
106. Чванов В.Г. Анализ математических задачи. Математика в школе, 1999, №4, с. 61-65.
107. Чекмарева Т.К. Задания к учебнику математики 3 класса: Пособие для учащихся трехлет. малокомплект. нач. шк. 5-е изд., перераб. -М.'.Просвещение, 1989. - 96 е.: ил.
108. Черенева Т.В. Задачи на движение. Математика в школе, 1994, № 3, с.13-14.
109. Шабалина З.П. Дифференцированный подход в обучении младших школьников. Начальная школа, 1990, № 6, с. 81-85.
110. Шикова Р.Н., Калинина И.Г. Самостоятельная работа учащихся с карточками на уроках математики. Начальная школа, 1994, № 5, с. 24-26.
111. Эрдниев П.М. Методика упражнений по математике. Пособие для учителя. М.: Просвещение, 1970. - 819 с.
112. Эрдниев П.М. Обучение математике в начальных классах. М.: Просвещение, 1995. - 350 с.
113. Эрдниев П.М. Обучение математике по УДЕ. Начальная школа, 1993, №4, с. 23-29.
114. Эрдниев П.М., Эрдинев О.П. Укрупнение дидактитческих единиц ((УДЕ) как новая технология обучения математике. Начальная школа, 1996, № 8, с. 49-53.
115. Якиманская И.С. Развивающее обучение. М.: Педагогика, 1979. -144 с.