автореферат и диссертация по педагогике 13.00.02 для написания научной статьи или работы на тему: Реализация профессионально-педагогической направленности обучения элементарной математике в педвузе
- Автор научной работы
- Антоновская, Виктория Владимировна
- Ученая степень
- кандидата педагогических наук
- Место защиты
- Архангельск
- Год защиты
- 2004
- Специальность ВАК РФ
- 13.00.02
Автореферат диссертации по теме "Реализация профессионально-педагогической направленности обучения элементарной математике в педвузе"
На правах рукописи
Антоновская Виктория Владимировна
РЕАЛИЗАЦИЯ ПРОФЕССИОНАЛЬНО-ПЕДАГОГИЧЕСКОЙ НАПРАВЛЕННОСТИ ОБУЧЕНИЯ ЭЛЕМЕНТАРНОЙ МАТЕМАТИКЕ В ПЕДВУЗЕ (НА ПРИМЕРЕ КУРСА «СТЕРЕОМЕТРИЯ»)
13.00.02-теория и методика обучения и воспитания (математика в системе начального, среднего и высшего образования)
Автореферат диссертации на соискание ученой степени кандидата педагогических наук
Орел 2004
Работа выполнена на кафедре методики преподавания математики Поморского государственного университета им. MB. Ломоносова
Научный руководитель Член-корреспондент РАО,
доктор педагогических наук, профессор Луканкин Геннадий Лаврович
Официальные оппоненты: доктор педагогических наук,
профессор Зайкин Михаил Иванович
кандидат педагогических наук, доцент Кожухов Сергей Константинович
Ведущая организация: Московский государственный
открытый педагогический университет им. М.А. Шолохова
Защита состоится 25 мая 2004 г. в 10 часов на заседании диссертационного совета К 212.183.03 по защите диссертаций на соискание ученой степепи кандидата наук при Орловском государственном университете по адресу: 302026, г. Орел, ул. Комсомольская, 95.
С диссертацией можно ознакомиться в библиотеке Орловского государственного университета.
Автореферат разослан апреля 2004 г.
Учепый секретарь диссертационного совета
Селютин В.Д.
ОБЩАЯ ХАРАКТЕРИСТИКА ИССЛЕДОВАНИЯ
Социально-экономические изменения, происходящие в нашем обществе, предъявляют новые требования к системе образования, что предопределяет переориентацию всего учебно-воспитательного процесса. Проводящаяся в России модернизация системы образования привела к возникновению новой образовательной парадигмы, провозгласившей принципы демократизации, вариативности и личностной направленности обучения, поэтому необходимо предоставить обучаемому оптимальные возможности получения образования желаемого уровня и характера в системе непрерывного образования. Для решения этой проблемы требуются педагогические кадры, подготовленные к работе в новых условиях, в том числе и учителя математики.
Вопросы совершенствования профессиональной подготовки учителя математики исследуются в работах математиков и методистов Ф.С. Авдеева, И.И. Баврина, В.А Гусева, И.В. Дробышевой, М.И. Зайкина, Т.А. Ивановой, Ю.М. Колягина, Г.Л. Луканкина, С.Г. Манвелова, О.В. Мантурова, Н.И. Мерлшюй, Н.В. Метельского,
A.Г. Мордковича, В.М. Монахова, А.И. Нижникова, Г.И. Саранцева,
B.Д. Селютина, Н.Л. Стефановой, И.М. Смирновой, Р.С. Черкасова, М.И. Шабунина и др.
Одним из аспектов совершенствования подготовки учителя математики является профессионально-педагогическая
направленность обучения (ППНО) математическим дисциплинам. Вопросам исследования общих положений, определяющих содержание принципов профессионально-педагогической
направленности обучения, условий их реализации в педагогических вузах и разработке научно-методических основ профессиональной педагогической подготовки учителей математики посвящены работы Н.Я. Виленкина, В.А. Гусева, ГЛ. Луканкина, В.М. Монахова, А.Г. Мордковича, Г.И. Саранцева, В.А. Сластепина, А.Н. Сендер,
A.И. Щербакова и др., а также диссертационные исследования
B.В. Андреева, Н.И. Батькановой, Х.А. Гербекова, А.Е. Мухина, О.А. Саввиной, Н.В. Садовникова, С.А. Самсоновой, О.И. Мартынюк, О.И. Федяева, Л.И. Шамановой, Т.К. Юрзановой и др.
В системе профессионально-педагогической подготовки учителей математики важное место занимает курс элементарной математики. На практических занятиях данного курса закладываются основы методического мастерства будущего учителя, поскольку студенты не только овладевают приемами решения задач, но и стремятся раскрыть процесс поиска решения, выбора соответствующих методов рассуждения, моделируют школьные учебные ситуации. Анализ учебны курса
элементарной математики в разные исторические промежутки времени позволяет сделать вывод, что в определенные периоды на физико-математических факультетах педвузов не уделялось должного внимания важности курса элементарной математики в системе других учебных дисциплин, что, в конечном итоге, снижало качество подготовки учителя. В настоящее время методическое обеспечение курса элементарной математики находится в стадии осмысления и разработки. Вопросам совершенствования методики преподавания курса элементарной математики и связанного с ним практикума по решению математических задач посвящены работы Ф.С.Авдеева, Н.И. Батькановой, Д.Т. Белешко, B.C. Дувановой, Л.Г. Куликовой, В.В. Крылова, Е.В. Мариной, О.И. Мартынюк, О.И. Федяева и др. Однако следует отметить, что в методической литературе практически не встречаются исследования, посвященные вопросам изучения стереометрии в курсе элементарной математики.
Все сказанное свидетельствует о наметившемся противоречии между потребностью в разработанной методике реализации профессионально-педагогической направленности курса
«Элементарная математика. Стереометрия» и ее фактическим состоянием. Необходимость разрешения этого противоречия и определяет актуальность проблемы исследования.
Объект исследования - профессиональная подготовка учителей математики в педагогических вузах.
Предмет исследования - профессионально-педагогическая направленность курса «Элементарная математика. Стереометрия».
Цель исследования - разработать методику усиления профессионально-педагогической направленности курса
«Элементарная математика. Стереометрия» с целью повышения качества профессиональной подготовки учителя.
При проведении исследования мы руководствовались следующей гипотезой: реализация профессионально-педагогической направленности обучения курса элементарной математики, ориентированная на повышение уровня фундаментальной подготовки, информационной культуры, на развитие профессиональных мотивов студентов, позволяет повысить эффективность процесса обучения в системе непрерывной подготовки учителя математики.
Для достижения цели исследования, решения поставленной проблемы и проверки выдвинутой гипотезы были сформулированы задачи исследования:
1. Проанализировать психолого-педагогические и методические работы, посвященные профессиональной подготовке учителей.
2. Проанализировать различные концепции и подходы к реализации программ обучения элементарной математике, выявить возможности курса. для осуществления профессионально-педагогической направленности обучения студентов.
3. Изучить психологические основы учебной мотивации студентов.
4. Выявить возможности использования компьютерных технологий при организации процесса обучения элементарной математике.
5. Разработать методические рекомендации по усилению профессионально-педагогической направленности курса «Элементарная математика. Стереометрия».
6. Разработать элективный курс «Развитие познавательных мотивов школьников средствами математики», способствующий формированию у студентов профессиональных умений и навыков.
Психолого-педагогической основой исследования являются три концепции:
• деятельностного подхода к образованию;
• профессионально-педагогической направленности обучения;
• единства обучения, воспитания и развития.
Проблема, цели и задачи исследования обусловили выбор методов исследования:
• анализ психолого-педагогической, математической и методической литературы;
• изучение и обобщение передового опыта преподавателей математики педвузов и учителей школ;
• анкетирование студентов и учителей школ;
• педагогический эксперимент, анализ, обобщение и статистическая обработка результатов исследования;
• обобщение личного опыта работы в качестве преподавателя элементарной математики педвуза.
Исследование проводилось в три этапа:
• На первом этапе (1997-1999 гг.) осуществлялись изучение и анализ психолого-педагогической, методической и математической литературы по проблемам профессиональной педагогической подготовки учителя, изучение и обобщите передового педагогического опыта. Кроме того, проведено исследование ценностей в профессиональной сфере учителей и студентов педвузов, изучена связь между познавательными и
профессиональными мотивами студентов. В результате этой работы была создана необходимая теоретическая база и выявлены основные направления для проведения исследования по выбранной теме.
• На втором этапе (1999-2001 гг.) проведено теоретическое и экспериментальное исследование возможностей реализации профессионально-педагогической направленности курса «Элементарная математика. Стереометрия»; подобран теоретический и задачный материал для проведения аудиторных занятий и организации самостоятельной работы студентов; разработана программа элективного курса «Развитие познавательных мотивов школьников средствами математики», проведен поисковый эксперимент.
• На третьем этапе (2001-2003 гг.) проведен обучающий эксперимент, выполнена обработка результатов с использованием статистических критериев; сделаны соответствующие выводы и внесены необходимые коррективы в содержание программы по элементарной математике и программы элективного курса по методике преподавания математики.
Новизна исследования состоит в следующем:
1. На основе системного подхода и концепции профессионально-педагогической направленности обучения в педвузе определены роль и место курса «Элементарная математика. Стереометрия» в системе профессиональной подготовки учителя математики.
2. Разработан учебно-методический комплект курса «Элементарная математика. Стереометрия», основанный на положениях концепции профессионально-педагогической направленности обучения в педвузе, предложены методические рекомендации по его использованию на занятиях со студентами физико-математических факультетов педвузов.
3. Установлены возможности и разработаны рекомендации по применению компьютерных технологий при организации процесса обучения элементарной математике в педвузе, позволяющие осуществлять подготовку специалистов, умеющих использовать достижения информатики и вычислительной техники, владеющих современными информационными технологиями в области образования.
4. Разработана и апробирована программа элективного курса по методике преподавания математики «Развитие познавательных мотивов школьников средствами математики», учитывающая современные требования к подготовке учителя математики в условиях модернизации системы образования.
Теоретическая значимость исследования состоит в том, что:
1. В процессе изучения аксиологических аспектов педагогической деятельности выделены профессионально-ценностные ориентации учителей и студентов педвузов, показана необходимость личностной подготовки студентов к профессиональной деятельности посредством реализации концепции профессионально-педагогической направленности обучения.
2. На основе деятельностного подхода установлено, что реализация принципов профессионально-педагогической направленности обучения математическим дисциплинам в педвузе является эффективным средством развития профессиональных мотивов студентов, что способствует повышению качества профессиональной подготовки учителей математики.
3. На основе анализа подходов к реализации программ обучения элементарной математике выявлены возможности курса «Элементарная математика. Стереометрия» для осуществления профессионально-педагогической направленности обучения студентов физико-математических факультетов педвузов.
На защиту выносятся следующие положения:
1. Реализация принципов профессионально-педагогической направленности обучения математическим дисциплинам позволит осуществить личностную подготовку студентов педвузов к профессиональной деятельности, трансформировать познавательные мотивы студентов в профессиональные.
2. Научно-методические основы постановки курса «Элементарная математика. Стереометрия» и элективного курса по методике преподавания математики «Развитие познавательных мотивов школьников средствами математики», способствующие повышению уровня профессиональной подготовки учителя математики в условиях профилизации образования.
3. Методические рекомендации к преподаванию курса «Элементарная математика. Стереометрия», направление на реализацию модели теоретических основ профессиональной подготовки учителей математики и концепции профессионально-педагогической направленности обучения математическим дисциплинам в педвузе.
Практическая значимость исследования
Теоретические положения, установленные в работе, могут быть использованы в педвузе при обучении элементарной математике и методике преподавания математики, при проведении элективных курсов, при выполнении курсовых и дипломных работ, а также в процессе организации самостоятельной работы студентов.
Апробация результатов исследования
Результаты работы докладывались на заседаниях методических объединений учителей г. Котласа и г. Коряжма (1999-2001 гг.), на межрегиональной научной конференции «Проблемы современного математического образования в педвузах и школах России» в г. Кирове (май 1998г.), на первой международной конференции молодых ученых Архангельской области «Малый город: экология, образование, наука, культура» (июнь 2001 г.), на городских Ломоносовских педагогических чтениях по проблеме «Управление качеством образования: технологический аспект» в г. Котласе (ноябрь 2001 г.), на региональной научно-практической конференции «Развивающий потенциал математики и его реализация в обучении» в г. Арзамасе (март 2002 г.), на Всероссийской научно-практической конференции «Проблемы качества подготовки учителя математики и информатики» в г.Н. Новгороде (декабрь 2002 г.), на Всероссийской научно-практической конференции «Профильная сельская школа: модели, содержание и технологии обучения» в г. Арзамасе (октябрь 2003 г.).
Результаты исследования внедрялись в практику работы в процессе самого исследования, проводимого по материалам созданных программ и методических рекомендаций, посредством проведения занятий со студентами естественно-математического факультета Коряжемского филиала ПГУ им. М.В. Ломоносова; публикаций; сообщений на заседаниях кафедры психологии, педагогики и методики преподавания математики Коряжемского филиала ПГУ им. М.В. Ломоносова, на конференциях и семинарах.
Обоснованность и достоверность научных положений, выводов и рекомендаций, сформулированных в диссертации, обеспечивается опорой на фундаментальные исследования педагогов, психологов, математиков, методистов, на анализ школьной и вузовской практики, собственный опыт диссертанта в качестве преподавателя элементарной математики педвуза. Достоверность результатов и выводов подтверждается проверкой основных положений диссертации в ходе многолетнего экспериментального преподавания, их согласованностью с основными положениями психолого-педагогической теории учебной деятельности и теории профессионально-педагогической направленности обучения в педвузе, положительной их оценкой на вышеперечисленных конференциях.
Структура диссертации определена логикой и последовательностью решения поставленных задач. Диссертация состоит из введения, двух глав (7 параграфов), заключения, списка литературы (285 наименований), пяти приложений.
ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ
Во введении дана общая характеристика работы, обоснована актуальность темы исследования, определены объект и предмет исследования, сформулированы гипотеза, цель и задачи научного поиска, раскрыты научная новизна, теоретическая и практическая значимость исследования, приводятся положения, выносимые на защиту, а также сведения об апробации и внедрении результатов исследования.
В первой главе «Теоретические основы профессиональной направленности обучения элементарной математике студентов педвуза» рассматриваются психологические основы учебной мотивации, принципы ППНО математическим дисциплинам в педвузе и их реализация при организации процесса обучения элементарной математике.
В первом параграфе рассмотрены психологические основы учебной мотивации студентов. Результаты исследований педагогов и психологов (Н.А. Бакшаева, Р.В. Бикмурзина, А.А. Вербицкий, В.К. Вилюнас, Е.Н. Кикоть, А.Н. Леонтьев, А.К. Маркова,
Н.И. Мешков, М.А. Родионов, Г.И. Саранцев, И.В. Фастовец, П.М. Якобсон и др.) показывают, что невозможно добиться эффективного обучения только путем совершенствования методики обучения без учета мотивов учебной деятельности. В учебной мотивации студентов важнейшую роль играют познавательные и профессиональные мотивы. Познавательные мотивы являются смыслообразующими в учебной деятельности и побуждают студентов к получению новых знаний, к личному самосовершенствованию. Профессиональные мотивы направляют активность человека в профессиональном поведении, нацеливают его на усвоение профессиональных знаний и способов действий. Основной проблемой профессионального образования является проблема перехода от познавательной деятельности к профессиональной. Этот переход идет прежде всего по линии трансформации мотивов. В современной системе образования первые два года обучения в вузе выпадают из процесса формирования профессиональной мотивации, хотя, по мнению психологов (А.А. Вербицкий, А.К. Маркова, И.В. Фастовец и др.), именно они соответствуют возрастному периоду, который является сензитивным для формирования профессиональных мотивов. Очевидно, что более продуктивным является путь формирования профессиональной мотивации на протяжении всего периода вузовского обучения. Применительно к педвузам одним из эффективных путей решения проблемы развития профессиональных мотивов в учебной деятельности является реализация ППНО, которая обеспечивается преемственностью в развитии содержательных линий,
методов, средств и форм обучения, а также ориентацией вузовского курса математики на формирование профессиональных умений будущего учителя.
Во втором параграфе отмечается, что процесс формирования профессиональной направленности студентов во многом зависит от системы ценностных ориентации личности. Особое место в ценностной сфере занимают ценности труда, поскольку именно они оказывают решающее влияние на формирование ценностной сферы индивида в целом. Структура профессионально-ценностных ориентации определяет поведение личности в профессиональной сфере, служит своеобразным «каркасом» соответствующей деятельности. Поскольку учитель признается носителем эталонных ценностей общества, его ценностно-смысловая сфера всегда являлась предметом пристального внимания психологов. Изменения в политической, экономической, духовной сферах современного общества повлекли за собой кардинальные изменения в системе профессионально-ценностных ориентации, в том числе связанных с профессией учителя.
Для изучения ценностных ориентации студентов педагогических вузов и преподавателей общеобразовательных школ нами было проведено исследование, в котором измерялись факторы привлекательности-непривлекательности профессии учителя. В исследовании предполагалось, что характеристики профессии, выделенные респондентами как привлекательные, и будут указывать на доминирующие ценности профессии учителя. Объектом исследования являлась студенческая молодежь педагогических вузов (Поморского государственного университета им. М.В. Ломоносова и Набережночелнинского педагогического института) и учителя общеобразовательных школ Европейского Севера. Всего было опрошено 1109 испытуемых, в том числе 598 студентов и 511 учителей школ. В работе использовалась методика изучения факторов привлекательности профессии, которая впервые была предложена В.А. Ядовым (в модификации Н.В. Кузьминой, А.А. Реана). Статистическая обработка данных по каждому из одиннадцати факторов проводилась с использованием коэффициента значимости (КЗ), который может принимать значения от -1 до 1.
Сравнение значимых и незначимых факторов в педагогической профессии отражает тенденцию на приоритет в группе студентов, выбравших педагогическую профессию, таких ценностей, как возможность творческой деятельности (КЗ=0,64), работа с людьми (КЗ=0,60) и возможность самосовершенствоваться (КЗ=0,46). Самыми непривлекательными сторонами педагогической профессии студенты называют такие факторы, как небольшая зарплата
(К3=-О,78) и переутомление на работе (КЗ=-0,44). Несколько отличная ситуация характерна для группы учителей. Самыми привлекательными факторами оказались соответствие работы способностям (КЗ=0,67) и характеру (КЗ=0,56), возможность творческой деятельности (КЗ=0,55). Малопривлекательными факторами в педагогической профессии учителя так же, как и студенты, называют небольшую зарплату (КЗ=-0,81) и
переутомление на работе (КЗ=-0,39). В целом, это указывает на более реалистичную позицию у учителей в выборе ценностей труда.
Анализ динамики личностных ориентации в профессии с возрастом не выявил серьезных скачков у учителей. Анализировались коэффициенты значимости в группах учителей со стажем менее пяти лет, от пяти до десяти лет и более десяти лет. Несколько иная картина сложилась с динамикой ценностей у студентов. Для них характерна тенденция к кардинальной переоценке такого фактора, как возможность достичь социального признания, уважения. Первокурсники оценивают этот фактор как очень привлекательный в будущей профессии. На третьем курсе значимость фактора резко снижается с 0,31 до -0,06. По нашему мнению, столь кардинальная переоценка значимости фактора происходит потому, что студенты впервые на третьем курсе выходят в школу на педагогическую практику. Идеальные представления о профессии корректируются, и, соответственно, меняется система оценки привлекательности профессии. На наш взгляд, многие студенты выбирают педагогическую профессию, руководствуясь ложными, наивными, идеализированными представлениями. В качестве примера приведем высказывания студентов младших курсов: «У учителей небольшой рабочий день», «В этой профессии нет ничего сложного: каждый год рассказываешь одно и то же».
Таким образом, мы приходим к выводу, что при организации учебного процесса в вузе необходимо пе только вооружать студентов профессиональными знаниями и умениями в преподавании определенной дисциплины, но и осуществлять личностную подготовку к профессиональной деятельности (формировать необходимые для учителя личностные качества, отношение к будущей профессии как жизненно значимой деятельности), при этом структура и содержание обучения должны быть адекватны сущности будущей профессиональной деятельности. Одним из путей решения данной задачи при подготовке учителей математики является реализация принципов профессионально-педагогической
направленности обучения.
Анализ научных исследований Н.И. Батькановой, Г.Л. Луканкина, А.Г. Мордковича и др., связанных с разработкой
положений и принципов ППНО математике в педвузе, позволил выделить основные из них: бинарности, ведущей идеи, фундаментальности, непрерывности, информатизации и комплексного подхода. В рамках данного исследования под профессиональной направленностью обучения математике в педагогическом вузе понимается создание для индивидуальной образовательной деятельности студента всех условий, обеспечивающих непрерывное и целенаправленное формирование у него основ педагогического мастерства, базирующихся па активных и глубоких знаниях школьного курса математики, научных основ и методического обеспечения этого курса. Концепция ППНО дает возможность рассматривать профессиональное образование студентов в педвузах при обучении разным предметам с единых позиций. При этом реализация принципов профессионально-педагогической
направленности обучения математическим дисциплинам в педвузе позволяет создать такие условия деятельности, которые дадут студенту возможность с первых дней обучения в вузе почувствовать себя в роли учителя, вызовут интерес к изучаемому материалу. По мере профессионального становления будет происходить сближение мотивов учения с мотивами реальной педагогической деятельности, что должно положительно повлиять на качество знаний и развитие личности в целом.
Среди математических и методических курсов в педвузе важное место занимает курс элементарной математики, поскольку он в определенном смысле объединяет вузовский и школьный курсы математики, тем самым предоставляя уникальные возможности для формирования профессиональных мотивов студентов. Анализ опыта преподавания курса элементарной математики в системе подготовки учителя математики позволяет сделать вывод о необходимости разработки методических основ реализации профессионалыю-педагогической направленности обучения элементарной математике в целом и ее стереометрической части в частности.
Во второй главе «Методика реализации принципов профессионально-педагогической направленности обучения элементарной геометрии студентов педвуза» рассмотрены роль и место курса «Элементарная математика. Стереометрия» в профессиональной подготовке учителя математики, содержание данного курса, дана характеристика элективного курса по методике преподавания математики «Развитие познавательных мотивов школьников средствами математики», описаны этапы педагогического эксперимента.
В первом параграфе отмечается, что основной целью курса «Элементарная математика. Стереометрия» (как и любого другого
математического курса) должна быть качественная подготовка учителя, способного работать в современных условиях в любых типах школ. Для этого необходимо не только дать студентам прочные знания математической теории, но и научить применять их при решении задач различного уровня сложности. Учебные пособия и задачники по всем разделам элементарной математики также должны быть направлены на достижение главной цели профессионально-педагогического образования, при этом доля самостоятельного участия студентов в учебном процессе должна быть максимальной.
Во втором параграфе второй главы работы представлена характеристика курса «Элементарная математика. Стереометрия», который призван обеспечить:
1. Знание основного содержания школьного курса математики с целью подготовки студентов к дальнейшему математическому образованию.
2. Знание внутренних логических связей между основными понятиями и фактами школьного курса математики, понимание их места в системе математических курсов педвуза.
3. Формирование навыков и умений по организации деятельности школьников на уроках математики, в том числе умения обучать решению задач разного уровня сложности.
4. Формирование навыков самостоятельной исследовательской работы в области математики как учебного предмета.
Задачи курса решаются на лекционных и практических занятиях, а также при организации самостоятельной работы студентов. Методика организации лекционных, практических занятий и самостоятельной работы студентов основывается на принципах профессионально-педагогической направленности обучения математическим дисциплинам в педвузе.
Внедрение информационных технологий в процесс обучения предъявляет новые требования к подготовке будущих учителей математики. В связи с этим возникает необходимость модернизации существующих учебных курсов, в том числе и курса элементарной математики, на основе компьютерных технологий. В работе выделены и описаны программно-педагогические средства, использование которых на занятиях по элементарной математике позволит осуществлять подготовку специалистов, умеющих использовать достижения информатики и вычислительной техники для решения профессиональных и учебных задач, владеющих современными информационными технологиями в области образования. В своей практике мы использовали следующие формы работы:
• изложение теоретического материал с использованием особенностей компьютерного представления (особо следует
отметить анимацию, позволяющую демонстрировать динамику какого-либо процесса);
• работа с компьютерным учебником (позволяет изучать материал с учетом индивидуальных особенностей студентов);
• выполнение упражнений с использованием компьютера (практика показывает, что автоматизация рутинных вычислений позволяет втрое увеличить количество решаемых заданий и сосредоточиться на математической стороне задач);
• компьютерная диагностика (количественная и качественная обработка результатов выполнения заданий, включающая в себя систему учета и ведения статистики);
• работа со справочными системами, позволяющими быстро ориентироваться в данной предметной области (работа, как правило, строится на основе технологии гипертекста);
• выполнение исследовательских заданий, в том числе при подготовке курсовых и дипломных работ.
В качестве примера в диссертации рассмотрены возможности применения программы «Открытая математика. Стереометрия» при изучении курса элементарной математики. При такой организации занятий знания усваиваются студентами в контексте разрешения моделируемых профессиональных ситуаций, что обуславливает развитие познавательной и профессиональной мотивации, придает личностный смысл процессу учения.
В третьем параграфе второй главы работы отмечается, что характерной чертой современного этапа развития отечественной школы является тенденция к учету интересов, склонностей и особенностей учащихся в учебно-воспитательном процессе, что особенно актуально в условиях профилизации образования. В связи с этим повышению эффективности процесса обучения математике в-школе будет способствовать ориентация методической системы на личность учащегося, его потребности и интересы. Эта работа во многом зависит от качества профессиональной подготовки учителя, от его умений организовывать процесс обучения с учетом мотивационных механизмов. При проведении занятий по элементарной математике внимание студентов акцентировалось на методических приемах, направленных на развитие познавательных мотивов обучаемых. Теоретическое осмысление и изучение методических аспектов организации учебной деятельности школьников с учетом особенностей их мотивациошюй сферы осуществляется в рамках разработашюго нами элективного курса по методике преподавания математики «Развитие познавательных
мотивов школьников средствами математики» (курс рассчитан на 2428 часов).
Курс читается в девятом семестре и предусматривает лекции, семинары, практические занятия, на которых студенты учатся применять полученные знания на практике (разрабатывать фрагменты уроков, составлять задания и т.д.), самостоятельную работу студентов (изучение научно-методической литературы, анализ учебного материала, выполнение творческих заданий и т.д.). В Приложении 5 диссертации приведена литература, рекомендуемая нами для проведения элективного курса.
Педагогический эксперимент проводился в течение 19982002 гг. и содержал три этапа: констатирующий, поисковый и обучающий. Основными задачами констатирующего эксперимента (1998-2000 гг.) являлись: обоснование необходимости личностной подготовки студентов к педагогической деятельности, включающей в себя формирование необходимых для учителя личностных качеств, обоснование необходимости создания новых методических разработок по изучению курса элементарной математики в педвузе, выявление возможных путей реализации взаимосвязи школьной математики и педвузовского курса элементарной математики. Для изучения проблемы были использованы следующие методы исследования: анализ психолого-педагогической, методической и математической литературы, школьных программ по курсу элементарной математики, беседы с преподавателями и студентами, изучение и обобщение педагогического опыта и собственного опыта преподавания, анкетирование студентов и анализ его результатов с использованием статистических критериев, теоретическое обобщение результатов исследования.
В ходе констатирующего эксперимента было установлено, что знания большинства выпускников педвуза носят формальный характер, недостаточно профессионально ориентированы. Причину этого многие исследователи видят в противоречии между тем, что и как изучает студент в педвузе, и тем, что и как ему предстоит делать в будущей профессиональной деятельности. В качестве одного из эффективных средств разрешения этого противоречия при изучении курса элементарной математики мы рассматриваем реализацию принципов профессионально-педагогической направленности обучения.
В поисковом эксперименте (1999-2000 уч.г.) приняли участие 180 студентов Коряжемского филиала ПТУ им. М.В. Ломоносова. Цель проведения эксперимента: выявление оптимальных условий организации процесса изучения элементарной математики и элективного курса по методике преподавания математики,
позволяющих реализовать профессионально-педагогическую направленность обучения. Содержание первой часта поискового эксперимента заключалось в выявлении оптимальных форм организации практических занятий по элементарной математике, наиболее эффективных форм контроля, в подборе задач для практических занятий и самостоятельной работы студентов, позволяющих реализовать связь со школьным курсом математики. В процессе второй части поискового эксперимента были выделены теоретические сведения, подобраны практические задачи для проведения элективного курса, позволяющего научить студентов организации процесса обучения математике с учетом мотивационных механизмов школьников.
Обучающий эксперимент (2001-2003 гг.) проводился в Коряжемском филиале ИГУ им. М.В. Ломоносова. В первой части обучающего эксперимента приняли участие 44 студента четырех студенческих групп (2 экспериментальные, 2 контрольные). Цель обучающего эксперимента заключалась в проверке эффективности предлагаемой методики проведения занятий по элементарной математике и элективного курса по методике преподавания математики, разработанных в поисковом эксперименте и направленных на реализацию концепции профессионально-педагогической направленности обучения. Статистическая обработка результатов первой части эксперимента была проведена с использованием критерия Вилкоксона-Манна-Уитни, анализ результатов подтвердил выдвинутую гипотезу. Для исследования характера влияния разработанной методики преподавания элективного курса на формирование мотивации к изучению данной дисциплины применялся двукратный опрос студентов, для обработки результатов использовался критерий Макнамары. На основе результатов проведенного исследования можно утверждать, что разработанная методика реализации взаимосвязи школьной математики и спецдисциплин в педвузе способствует формированию мотивации студентов к изучению элективных курсов, выраженной в понимании необходимости изучения дисциплины будущими учителями математики.
Основные выводы и результаты исследования
В ходе исследования были получены следующие основные результаты:
1. Модернизация системы образования требует совершенствования системы подготовки учителей, в том числе и учителей математики. Изучение и анализ исследований психологов и педагогов позволяют сделать вывод о необходимости личностной подготовки будущих учителей к профессиональной деятельности,
которая подразумевает прежде всего формирование профессиональной мотивации на протяжении всего периода вузовского обучения. Эффективному решению этой задачи будет способствовать реализация принципов профессионально-педагогической направленности обучения математическим дисциплинам.
2. На основании изучения и анализа истории обучения элементарной математике в отечественной высшей школе был сделан вывод о том, что профессионально-педагогическая направленность обучения математическим дисциплинам в педвузе, в частности элементарной математике, реализуется в настоящее время недостаточно. В работе теоретически и практически обоснованы место и роль в профессиональной подготовке учителя математики курса элементарной математики, осуществляющего синтез математических знаний студентов и их переход в профессиональные знания с соответствующей трансформацией мотивов. Проанализированы различные концепции и подходы к реализации программ обучения элементарной математике, выявлены возможности курса для осуществления профессионально-педагогической направленности обучения студентов физико-математических факультетов педвузов.
3. На основе системного подхода и принципов профессионально-педагогической направленности обучения в педвузе сформулированы задачи, определены структура и содержание программы курса «Элементарная математика. Стереометрия», разработаны методические рекомендации по усилению профессионально-педагогической направленности курса «Элементарная математика. Стереометрия», экспериментально проверена эффективность предлагаемой методики.
4. Внедрение информационных технологий в процесс обучения предъявляет новые требования к подготовке учителей математики. В связи с этим возникает необходимость модернизации существующих учебных курсов, в том числе и курса элементарной математики, на основе компьютерных технологий. В работе выделены и описаны программно-педагогические средства, применение которых при организации процесса обучения элементарной математики позволит студентам овладеть современными методами представления и извлечения информации, современными технологиями информационного взаимодействия с моделями объектов, процессов и явлений.
5. Особое место в системе подготовки учителя занимают элективные курсы, которые не только расширяют и углубляют знания студентов, но и прививают интерес к самостоятельной
исследовательской работе. В целях повышения качества профессиональной подготовки учителей математики в условиях профилизации образования разработана программа и методические рекомендации по проведению элективного курса «Развитие познавательных мотивов школьников средствами математики».
6. Экспериментальная проверка разработанной методики изучения курса «Элементарная математика. Стереометрия» и элективного курса по методике преподавания математики показала ее эффективность. Было установлено, что реализация профессионально-педагогической направленности обучения курса элементарной математики и элективного курса, ориентированная на повышение уровня фундаментальной подготовки, информационной культуры, на развитие профессиональных мотивов студентов, позволяет повысить эффективность процесса обучения в системе непрерывной подготовки учителя математики. Таким образом, в результате эксперимента подтвердилась гипотеза исследования.
Основное содержание диссертации отражено в следующих публикациях автора:
1. Антоновская В.В. О нахождении различных способов решения задач // Проблемы современного математического образования в педвузах и школах России. - Киров: Изд-во Вятского госпедуниверситета, 1998. -С.81-82.
2. Антоновская В.В. Элементы профессионально-педагогической направленности курса «Элементарная математика и ПРМЗ» // X Ломоносовские чтения: Доклады и тезисы.- Архангельск: Изд-во ПГУ им. М.В. Ломоносова, 1998. -С.231-232.
3. Антоновская В.В. Творческое конструирование новых геометрических образов как эффективный прием развития пространственного мышления // Сельская школа как региональный образовательно - культурный центр. - Арзамас, АПТИ, 2000. -С.184-187.
4. Антоновская В.В. Изучение факторов привлекательности профессии учителя // XIII Ломоносовские чтения. Сборник научных трудов. - Архангельск: Поморский госуниверситет, 2001. -С. 488-489.
5. Антоновская В.В. О геометрических задачах, решаемых без рисунка // Развивающий потенциал математики и его реализация в обучении: сборник научных и методических работ, представленных на региональную научно-практическую конференцию/ Под ред. М.И. Зайкина. - Арзамас, АГПИ, 2002. -С.94-95.
6. Антоновская В.В. Развитие пространственного мышления. Методические рекомендации. - М.: Изд-во МПУ «Народный учитель», 2002. - 37с.
7. Антоновская В.В., Баданина Л.П. Ценностные ориентации в профессиональной сфере // Северная Двина, - №6.-2002. - С.2-6.
8. Антоновская В.В. Об исследовательских задачах в курсе элементарной математики // Актуальные проблемы паучно-исследовательской работы в средней1 и высшей школах. -Мурманск: МГПИ, 2002. - С.31-32.
9. Антоновская В.В. Принципы профессионально-педагогической направленности обучения математическим дисциплинам в педвузе: мотивационный аспект // Проблемы качества подготовки учителей математики и информатики. - Нижний Новгород: НГПУ, 2002. -С.32-34.
10.Антоновская В.В. О подборе задачного материала для занятий по элементарной математике // Актуальные проблемы обучения в школах и вузах малых городов России. -Архангельск: ПТУ им. М.В. Ломоносова, 2003. - С.28-31.
11.Антоновская В.В. О подготовке студентов педвузов к работе по развитию познавательных мотивов учащихся профильных сельских школ // Профильная сельская школа: модели, содержание и технологии обучения. - Арзамас, АГПИ, 2003. - С.260-262.
12. Антоновская В.В. Актуализация познавательных мотивов школьников средствами математики // Народное образование в XXI веке. Выпуск 3, 2003. - С. 15-21.
Антоновская В.В. Реализация профессионально-педагогической направленности обучения элементарной математике в педвузе (на примере курса «Стереометрия»). - Автореф. дис. ... канд. пед. наук. -Орел, 2004.-19с.
Подписано в печать 19.04.04. Формат 60x84 1/16. Тираж 100 экз. Заказ 1401.
Отпечатано с оригинал-макета в Котласской типографии 165400, г. Котлас, ул. Невского, 20. Тел.4-18-25
Содержание диссертации автор научной статьи: кандидата педагогических наук, Антоновская, Виктория Владимировна, 2004 год
ВВЕДЕНИЕ.
ГЛАВА 1. ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ПРОФЕССИОНАЛЬНОЙ НАПРАВЛЕННОСТИ ОБУЧЕНИЯ ЭЛЕМЕНТАРНОЙ МАТЕМАТИКЕ СТУДЕНТОВ ПЕДВУЗА
§1. Психологические основы учебной мотивации.
§2. Принципы профессионально-педагогической направленности обучения математическим дисциплинам в педвузе.
§3. Реализация принципов профессионально-педагогической направленности при организации процесса обучения элементарной математике.
ГЛАВА 2. МЕТОДИКА РЕАЛИЗАЦИИ ПРИНЦИПОВ
ПРОФЕССИОНАЛЬНО-ПЕДАГОГИЧЕСКОЙ НАПРАВЛЕННОСТИ ОБУЧЕНИЯ ЭЛЕМЕНТАРНОЙ ГЕОМЕТРИИ СТУДЕНТОВ ПЕДВУЗА
§ 1. Роль и место курса «Элементарная математика. Стереометрия» в системе профессиональной подготовки учителя математики.
§2. Характеристика курса «Элементарная математика.
Стереометрия».
§3. Характеристика элективного курса «Развитие познавательных мотивов школьников средствами математики».
§4. Организация и проведение педагогического эксперимента.
Введение диссертации по педагогике, на тему "Реализация профессионально-педагогической направленности обучения элементарной математике в педвузе"
Социально-экономические изменения, происходящие в нашем обществе, предъявляют новые требования к системе образования, что предопределяет переориентацию всего учебно-воспитательного процесса. Проводящаяся в России модернизация системы образования привела к возникновению новой образовательной парадигмы, провозгласившей принципы демократизации, вариативности и личностной направленности обучения, поэтому необходимо предоставить обучаемому оптимальные возможности получения образования желаемого уровня и характера в системе непрерывного образования. Для решения этой проблемы необходимы педагогические кадры, подготовленные к работе в новых условиях, в том числе и учителя математики.
Огромную роль в профессиональном становлении учителя играет вузовская подготовка. Именно в этот период закладываются и формируются необходимые профессиональные знания, умения, а также качества личности будущего учителя, т.е. фундамент профессионализма. Повышение качества профессиональной подготовки требует от педвуза новых, более эффективных путей организации учебного процесса при подготовке учителей математики.
Результаты исследований психологов и педагогов показывают, что невозможно добиться эффективного обучения только путем совершенствования методики обучения без учета мотивов учебной деятельности. А.К. Маркова отмечает, что «.формируя и развивая на каждом этапе профессионального обучения психологические качества будущего специалиста,. важно, прежде всего, стимулировать мотивационную сферу, а затем на её основе - операциональную (знания, способы деятельности, технологии и т.п.» ([154], с.225). Однако в практике преподавания вузовских дисциплин ориентация на полноценный учет и целенаправленное формирование мотивации учения не приняла сколько-нибудь устойчивого характера. Как показывают результаты наблюдений за работой преподавателей, беседы с ними, анализ психолого-педагогической и методической литературы, у значительной части преподавателей все же остается иллюзия возможности организации процесса обучения при минимальном учете мотивационных механизмов.
В учебной мотивации студентов важнейшую роль играют профессиональные и познавательные мотивы. Познавательные мотивы являются смыслообразующими в учебной деятельности и побуждают студентов к получению новых знаний, к личному самосовершенствованию. Профессиональные мотивы направляют активность человека в профессиональном поведении, нацеливают его на усвоение профессиональных знаний и способов действий. Согласно теории деятельности, различие познавательных и профессиональных мотивов заключается в их предметном содержании: профессиональные мотивы опредмечиваются в профессиональной деятельности, познавательные — в учебной деятельности. По мнению А.А.Вербицкого [45,46], основной проблемой профессионального образования является проблема перехода от познавательной деятельности к профессиональной. Этот переход идет прежде всего по линии трансформации мотивов. В современной системе образования первые два года обучения в вузе выпадают из процесса формирования профессиональной мотивации, хотя, по мнению психологов (А.А. Вербицкий, А.К. Маркова, И.В. Фастовец и др.), именно они соответствуют возрасту, сензитивному формированию профессиональных мотивов. Очевидно, что более продуктивным является путь формирования профессиональной мотивации на протяжении всего периода вузовского обучения. На наш взгляд, при подготовке учителей математики эффективному решению этой задачи будет способствовать реализация принципов профессионально-педагогической направленности обучения (ППНО) математическим дисциплинам.
В рамках данного исследования под профессиональной направленностью обучения математике в педагогическом вузе понимается создание для индивидуальной образовательной деятельности студента всех условий, обеспечивающих непрерывное и целенаправленное формирование у него основ педагогического мастерства, базирующихся на активных и глубоких знаниях школьного курса математики, научных основ и методического обеспечения этого курса. Вопросам исследования общих положений, определяющих содержание принципов профессионально-педагогической направленности обучения, условий их реализации в педагогических вузах и разработке научно-методических основ профессиональной педагогической подготовки учителей математики посвящены исследования В.В.Андреева [9], Н.И. Батькановой [28], В.А. Гусева [67,68], Г.Л. Луканкина [145], В.М.Монахова [174], Г.И. Саранцева [220, 224], В.А. Сластенина [232], В.Д. Селютина [229], А.И.Щербакова [271, 272, 273] и др. Согласно данным исследованиям, профессиональная подготовка студентов должна осуществляться в следующих направлениях:
- мировоззренческом;
- психолого-педагогическом;
- узкоспециальном;
- методическом.
Данные направления должны пронизывать практику преподавания всех дисциплин, изучаемых в педвузе, на протяжении всего периода обучения. В настоящее время в дидактике высшей школы выделены шесть принципов профессионально-педагогической направленности обучения:
- принцип фундаментальности;
- принцип ведущей идеи;
- принцип непрерывности;
- принцип бинарности;
- принцип информатизации;
- принцип комплексного подхода.
Принципы ППНО дают возможность рассматривать профессиональное образование студентов в педагогических вузах при обучении разным предметам с единых позиций, при этом их реализация при обучения математическим дисциплинам в педвузе позволяет создать такие условия деятельности, которые дадут студенту возможность с первых дней обучения в вузе почувствовать себя в роли учителя, вызовут интерес к изучаемому материалу. По мере профессионального становления будет происходить сближение мотивов учения с мотивами реальной педагогической деятельности, что должно повлиять на качество знаний и развитие личности в целом. В направлении разработки основных математических курсов в соответствии с концепцией профессионально-педагогической направленности обучения проделана уже немалая работа. Можно назвать работы В.В. Андреева [9], Н.И. Батькановой [28], JI.H. Евелиной [81], О.И. Мартынюк [159], А.Е. Мухина [178], О.А.Саввиной [215], Н.В. Садовникова [216], М.А. Сазоновой [217], С.А. Самсоновой [218] и др. Указанные диссертации посвящены проблеме профессионально-педагогической подготовки учителя математики в период вузовского обучения при изучении курсов математического анализа, алгебры и теории чисел, геометрии, элементарной математики, стохастики.
В профессионально-педагогической подготовке будущих учителей математики важное место занимает курс элементарной математики. Если в курсах математического анализа, алгебры и геометрии дается научное обоснование всех понятий, вводимых в школьной математике, и процесс решения задач по этим дисциплинам направлен, прежде всего, на отработку тех или иных сторон изучаемого понятия, то в курсе элементарной математики главное внимание уделяется именно решению задач. На практических занятиях этого курса закладываются основы методического мастерства будущего учителя математики, так как студенты не только овладевают приемами решения задачи, но и стремятся раскрыть процесс поиска решения, выбора соответствующих методов рассуждения при решении задачи, моделируют школьные учебные ситуации.
Курс элементарной математики в процессе своего существования претерпел значительные изменения. Историю его преподавания можно условно разделить на три этапа:
1 этап (с 1937 г. по 1970 г.). В этот период основной задачей курса являлось расширение и углубление знаний студента, полученных им в школе. Мало времени отводилось на решение задач.
2 этап (с 1970 г. по 1989 г.). На этом этапе произошел отказ от теоретического содержания курса элементарной математики и трансформирование его в «Практикум по решению математических задач», что привело к снижению уровня профессиональной подготовки учителей математики.
3 этап (с 1989 г. по настоящее время). Курс элементарной математики еще полностью не сформировался. Идет поиск наиболее эффективных вариантов учебных планов и программ. В стадии разработки находятся и вопросы организации обучения студентов.
Анализ учебных планов и программ курса элементарной математики в разные исторические промежутки времени позволяет сделать вывод, что в определенные периоды на физико-математических факультетах педвузов не придавалось должного значения важности курса элементарной математики в системе других учебных дисциплин, что, в конечном итоге, снижало качество подготовки будущих учителей. В настоящее время методическое обеспечение курса элементарной математики находится в стадии осмысления и разработки. Вопросам совершенствования методики преподавания курса элементарной математики и связанного с ним практикума по решению математических задач посвящены диссертационные исследования Ф.С. Авдеева [1], Н.И. Батькановой [28], B.C. Дувановой [78], Л.Г. Куликовой [127], В.В. Крылова [124], Е.В.Мариной [153], О.И. Мартынюк [159], О.И. Федяева [249] и других. Однако в методической литературе практически не встречаются исследования, посвященные вопросам изучения стереометрии в курсе элементарной математики.
Вместе с тем анализ имеющегося опыта и результаты исследований [99, 119, 120, 186] позволяют сделать вывод, что учащиеся школ, студенты и даже учителя испытывают значительные трудности при решении стереометрических задач. Все сказанное свидетельствует о наметившемся противоречии между потребностью в разработанной методике реализации профессионально-педагогической направленности курса «Элементарная математика. Стереометрия» и ее фактическим состоянием. Необходимость разрешения этого противоречия и определяет актуальность проблемы исследования.
Объект исследования - профессиональная подготовка учителей математики в педагогических вузах.
Предмет исследования — профессионально-педагогическая направленность курса «Элементарная математика. Стереометрия».
Цель исследования - разработать методику усиления профессионально-педагогической направленности курса «Элементарная математика. Стереометрия» с целью повышения качества профессиональной подготовки учителя.
При проведении исследования мы руководствовались следующей гипотезой: реализация профессионально-педагогической направленности обучения курса элементарной математики, ориентированная на повышение уровня фундаментальной подготовки, информационной культуры, на развитие профессиональных мотивов студентов, позволяет повысить эффективность процесса обучения в системе непрерывной подготовки учителя математики.
Для достижения цели исследования, решения поставленной проблемы и проверки выдвинутой гипотезы были сформулированы задачи исследования:
1. Проанализировать психолого-педагогические и методические работы, посвященные профессиональной подготовке будущих учителей.
2. Проанализировать различные концепции и подходы к реализации программ обучения элементарной математике, выявить возможности курса для осуществления профессионально-педагогической направленности обучения студентов.
3. Изучить психологические основы учебной мотивации студентов.
4. Выявить возможности использования компьютерных технологий при организации процесса обучения элементарной математике в педвузе.
5. Разработать методические рекомендации по усилению профессионально-педагогической направленности курса «Элементарная математика. Стереометрия».
6. Разработать элективный курс по методике преподавания математики «Развитие познавательных мотивов школьников средствами математики», способствующий формированию у студентов профессиональных умений и навыков.
Психолого-педагогической основой исследования являются три концепции:
• деятельностного подхода к образованию;
• профессионально-педагогической направленности обучения;
• единства обучения, воспитания и развития.
Теория учебной деятельности возникла на базе нескольких общепсихологических теорий, одной из которых была теория ведущей деятельности А.Н. Леонтьева [134, 135, 136]. Деятельностью А.Н.Леонтьев называет такой процесс, который характеризуется «тем, что то, на что направлен данный процесс в целом (его предмет), всегда совпадает с тем объективным, что побуждает субъекта к данной деятельности, то есть мотивом» ([134], с.51). В соответствии с деятельностным подходом, усвоение содержания исторического опыта осуществляется не путем передачи информации о нем человеку, а в процессе его собственной активности, направленной на предметы и явления окружающего мира. Усвоение социального опыта происходит посредством активной, «пристрастной» (по 4
А.Н. Леонтьеву) деятельности. Применительно к профессионально-педагогической подготовке, деятельностный подход рассматривается как связь деятельности преподавателя (ему принадлежит ведущая роль в обучении) и двух видов деятельности студентов: учебно-познавательной (по изучению программного материала) и профессиональной (по овладению профессией учителя).
Под профессионально-педагогической направленностью обучения понимается непрерывное и целенаправленное формирование у студентов основ профессионализма педагогической деятельности.
Единство обучения, воспитания и развития есть важнейшая закономерность педагогического процесса. Как отмечает JI.C. Выготский, «обучение вызывает у ребенка интерес к жизни, побуждает и приводит в движение ряд внутренних процессов развития, поэтому оно не есть развитие, но, правильно организованное, оно влечет за собой умственное развитие, вызывает к жизни ряд процессов, которые вне обучения были бы невозможны» ([52], с. 34). Воспитывающим называется такое обучение, при котором достигается органическая связь между приобретением учащимися знаний, умений и навыков и формированием их личности. Характер и результаты воспитания в процессе обучения определяются его научностью; содержанием передаваемых знаний; организацией и методами учебной работы; связью обучения с жизнью, с личным опытом учащихся; учетом особенностей их возрастного и индивидуального развития.
Методы исследования:
• анализ психолого-педагогической, математической и методической литературы;
• изучение и обобщение передового опыта преподавателей математики педвузов и учителей школ;
• анкетирование студентов и учителей школ; и
• педагогический эксперимент, анализ, обобщение и статистическая обработка результатов исследования;
• обобщение личного опыта работы в качестве преподавателя элементарной математики педвуза.
Исследование проводилось в три этапа:
• На первом этапе (1997-1999 гг.) осуществлялось изучение и анализ психолого-педагогической, методической и математической литературы по проблемам профессиональной педагогической подготовки учителя, изучение и обобщение передового педагогического опыта. Кроме того, были исследованы ценности в профессиональной сфере учителей и студентов педвузов, изучена связь между познавательными и профессиональными мотивами студентов. В результате этой работы была создана необходимая теоретическая база и выявлены основные направления для проведения исследования по выбранной теме.
• На втором этапе (1999-2001 гг.) было проведено теоретическое и экспериментальное исследование возможностей реализации профессионально-педагогической направленности курса «Элементарная математика. Стереометрия»; подобран теоретический и задачный материал для проведения аудиторных занятий и самостоятельной работы студентов; разработана программа элективного курса «Развитие познавательных мотивов школьников средствами математики», проведен поисковый эксперимент.
• На третьем этапе (2001-2003 гг.) проведен обучающий эксперимент, выполнена обработка результатов с использованием статистических критериев; сделаны соответствующие выводы и внесены необходимые коррективы в содержание программы по элементарной математике и программы элективного курса по методике преподавания математики.
Новизна исследования состоит в следующем:
1. На основе системного подхода и концепции профессионально-педагогической направленности обучения в педвузе определены роль и место курса «Элементарная математика. Стереометрия» в системе профессиональной подготовки учителя математики.
2. Разработан учебно-методический комплект курса «Элементарная математика. Стереометрия», основанный на положениях концепции профессионально-педагогической направленности обучения в педвузе, предложены методические рекомендации по его использованию на занятиях со студентами физико-математических факультетов педвузов.
3. Установлены возможности и разработаны рекомендации по применению компьютерных технологий при организации процесса обучения элементарной математике в педвузе, позволяющие осуществлять подготовку специалистов, умеющих использовать достижения информатики и вычислительной техники, владеющих современными информационными технологиями в области образования.
4. Разработана и апробирована программа элективного курса по методике преподавания математики «Развитие познавательных мотивов школьников средствами математики», учитывающая современные требования к подготовке учителя математики в условиях модернизации системы образования.
Теоретическая значимость исследования состоит в том, что:
1. В процессе изучения аксиологических аспектов педагогической деятельности выделены профессионально-ценностные ориентации учителей и студентов педвузов, показана необходимость личностной подготовки студентов к профессиональной деятельности посредством реализации концепции профессионально-педагогической направленности обучения.
2. На основе деятельностного подхода установлено, что реализация принципов профессионально-педагогической направленности обучения математическим дисциплинам в педвузе является эффективным средством развития профессиональных мотивов студентов, что способствует повышению качества профессиональной подготовки будущих учителей математики.
3. На основе анализа подходов к реализации программ обучения элементарной математике выявлены возможности курса «Элементарная математика. Стереометрия» для осуществления профессионально-педагогической направленности обучения студентов физико-математических факультетов педвузов.
На защиту выносятся следующие положения:
1. Реализация принципов профессионально-педагогической направленности обучения математическим дисциплинам позволит осуществить личностную подготовку студентов педвузов к профессиональной деятельности, трансформировать познавательные мотивы студентов в профессиональные.
2. Научно-методические основы постановки курса «Элементарная математика. Стереометрия» и элективного курса по методике преподавания математики «Развитие познавательных мотивов школьников средствами математики», позволяющих повысить уровень профессиональной подготовки будущего учителя математики в условиях профилизации образования.
3. Методические рекомендации к преподаванию курса «Элементарная математика. Стереометрия», направленные на реализацию модели теоретических основ профессиональной подготовки будущих учителей математики и концепции профессионально-педагогической направленности обучения математическим дисциплинам в педвузе.
Практическая значимость исследования
Теоретические положения, установленные в работе, могут быть использованы в педвузе при обучении элементарной математике и методике преподавания математики, при проведении элективных курсов, при выполнении курсовых и дипломных работ, а также в процессе организации самостоятельной работы студентов.
Апробация результатов исследования
Результаты работы докладывались на заседаниях методических объединений учителей г.Котласа и г. Коряжма (1999-2001 гг.), на межрегиональной научной конференции «Проблемы современного математического образования в педвузах и школах России» в г. Кирове (май 1998 г.), на первой международной конференции молодых ученых Архангельской области «Малый город: экология, образование, наука, культура» (июнь 2001 г.), на городских Ломоносовских педагогических чтениях по проблеме «Управление качеством образования: технологический аспект» в г.Котласе (ноябрь 2001 г.), на региональной научно-практической конференции «Развивающий потенциал математики и его реализация в обучении» в г.Арзамасе (март 2002 г.), на Всероссийской научно-практической конференции «Проблемы качества подготовки учителя математики и информатики» в г.Н.Новгороде (декабрь 2002 г.), на Всероссийской научно-практической конференции «Профильная сельская школа: модели, содержание и технологии обучения» в г. Арзамасе (октябрь 2003 г.).
Результаты исследования внедрялись в практику работы в процессе самого исследования, проводимого по материалам созданных программ и методических рекомендаций, посредством проведения занятий со студентами естественно-математического факультета Коряжемского филиала 111У им. М.В. Ломоносова; публикаций; сообщений на заседаниях кафедры психологии, педагогики и методики преподавания математики Коряжемского филиала ПТУ им. М.В. Ломоносова, на конференциях и семинарах.
Обоснованность и достоверность научных положений, выводов и рекомендаций, сформулированных в диссертации, обеспечивается опорой на фундаментальные исследования педагогов, психологов, математиков, методистов, на анализ школьной и вузовской практики, собственный опыт диссертанта в качестве преподавателя элементарной математики педвуза. Достоверность результатов и выводов подтверждается проверкой основных положений диссертации в ходе многолетнего экспериментального преподавания, их согласованностью с основными положениями психолого-педагогической теории учебной деятельности и теории профессионально-педагогической направленности обучения в педвузе, положительной их оценкой на вышеперечисленных конференциях.
Заключение диссертации научная статья по теме "Теория и методика обучения и воспитания (по областям и уровням образования)"
ВЫВОДЫ ПО ВТОРОЙ ГЛАВЕ
1. Теоретически и практически обоснованы место и роль в профессиональной подготовке учителя математики курса элементарной математики, осуществляющего синтез математических знаний студентов и их переход в профессиональные знания с соответствующей трансформацией мотивов. Проанализированы различные концепции и подходы к реализации программ обучения элементарной математике, выявлены возможности курса для осуществления профессионально-педагогической направленности обучения студентов физико-математических факультетов педвузов.
2. На основе системного подхода и принципов профессионально-педагогической направленности обучения в педвузе сформулированы задачи, определены структура и содержание программы курса «Элементарная математика. Стереометрия», разработаны методические рекомендации по усилению профессионально-педагогической направленности курса «Элементарная математика. Стереометрия».
3. Выделены и описаны программно-педагогические средства, применение которых при организации процесса обучения элементарной математики позволит студентам овладеть современными методами представления и извлечения информации, современными технологиями информационного взаимодействия с моделями объектов, процессов и явлений.
4. В целях повышения качества профессиональной подготовки учителей математики в условиях профилизации образования разработана программа и методические рекомендации по проведению элективного курса «Развитие познавательных мотивов школьников средствами математики».
5. Экспериментальная проверка разработанной методики изучения курса «Элементарная математика. Стереометрия» и элективного курса по методике преподавания математики показала ее эффективность. Было установлено, что реализация профессионально-педагогической направленности обучения курса элементарной математики и элективного курса, ориентированная на повышение уровня фундаментальной подготовки, информационной культуры, на развитие профессиональных мотивов студентов, позволяет повысить эффективность процесса обучения в системе непрерывной подготовки учителя математики. Таким образом, в результате эксперимента подтвердилась гипотеза исследования.
150
ЗАКЛЮЧЕНИЕ
Отличительные для конца XX века - начала XXI века изменения в характере образования — в его направленности, целях, содержании — все более явно ориентируют его на творческую инициативу, самостоятельность обучаемых, конкурентноспособность, мобильность будущих специалистов. Эти изменения нашли отражение в Федеральном законе «Об образовании», Концепции модернизации отечественного образования на период до 2010 года. Все это, несомненно, оказывает влияние на систему подготовки инженерных кадров. Общество уже привыкло к тому, что выпускник вуза — это во многом «полуфабрикат», который становится готовым «продуктом», только приобщившись к реальной профессиональной деятельности. Между тем, уже в период обучения в вузе можно создать студентам условия для приобщения к профессиональной деятельности. Эффективному решению этой задачи будет способствовать реализация профессиональной направленности обучения, основные принципы которой рассмотрены в работах А.Г. Мордковича, Г.Л. Луканкина, Н.И. Батькановой.
Важное место в профессиональной подготовке инженеров занимает курс математики, который, в известном смысле. При его изучении студенты смогут систематизировать и обобщить содержание школьного курса математики, подготовиться к дальнейшему изучению специальных дисциплин вуза, овладеть профессиональными умениями и навыками. В связи с этим нами была поставлена задача изучения возможностей реализации профессиональной направленности обучения в курсе математики.
В ходе теоретического и экспериментального исследования поставленной проблемы, в соответствии с задачами и целями исследования были получены следующие результаты:
1. На основе деятельностного подхода описаны психологические основы учебной мотивации студентов.
2. Теоретически и практически обосновано место и роль курса математики в профессиональной подготовке инженеров, осуществляющего синтез математических знаний студентов и их переход в профессиональные знания с соответствующей трансформацией мотивов.
3. Проанализированы различные концепции и подходы к реализации программ обучения математике, выявлены возможности курса для осуществления профессиональной направленности обучения.
4. На основе системного подхода и принципов профессионально-педагогической направленности обучения в вузе сформулированы задачи, определены структура и содержание программы курса математики.
5. Выявлены возможности использования компьютерных технологий при организации процесса обучения математике.
6. Разработаны методические рекомендации по усилению профессиональной направленности курса математики, экспериментально проверена эффективность предлагаемой методики.
Рассмотренный вариант построения курса математики позволит улучшить качество профессиональной подготовки инженера.
152
Список литературы диссертации автор научной работы: кандидата педагогических наук, Антоновская, Виктория Владимировна, Архангельск
1. Авдеев Ф.С. Научно-методические основы профессиональной подготовки будущего учителя математики сельской малокомплектной школы.-Дис. . д-ра пед. наук. — Орел, 1994. -419с.
2. Акимова А.П. О характере профессиональных умений в деятельности педагогов-мастеров// Современные психолого-педагогические проблемы высшей школы. Выпуск 1. -Ленинград, 1973. С. 37-44.
3. Александров А.Д. и др. Геометрия: Учеб. пос. для 10 кл. сред. шк. -М.: Просвещение, 2003.-237с.
4. Александров А.Д. и др. Геометрия: Учеб. пос. для 10-11 кл. сред, шк. М.: Просвещение, 2002. -271с.
5. Александров А.Д. и др. Геометрия: Учеб. пос. для 11 кл. сред. шк. -М.: Просвещение, 2001.-318с.
6. Александров Г.Н. Общая характеристика практического занятия // Вопросы проведения практических занятий.-Уфа, 1975.-С. 3-18.
7. Александровский М.И. Стереометрические задачи на построение // Математика в школе. -1950. -№1. -С. 30-38.
8. АмутноваС.П. Методические основы подготовки учителя математики в педвузе к работе в условиях сельской малокомплектной школы. — Дис. в виде научного доклада . канд. пед. наук. Саранск, 1995. - 38с.
9. Андреев В.В. Профессиональная направленность обучения студентов педагогических вузов в курсе теории аналитических функций.— Дис. канд. пед. наук. М., 1993. - 253 с.
10. Андронова Т.Д. Место умения анализировать педагогические явления в профессионально-педагогической структуре учителя // Формирование личности учителя в системе высшегопедагогического образования / Под ред. В.А. Сластенина М., 1980.-С. 33-41.
11. Антоновская В.В. Развитие пространственного мышления. Методические рекомендации.-М.: изд-во МПУ «Народный учитель», 2002.-37с.
12. Аргунов Б.И. Об опыте работы по новой программе курса геометрии//Совершенствование подготовки будущих учителей математики. Материалы семинара заведующих кафедрами пединститутов РСФСР. Тула, 1975. - С.38-44.
13. З.Архангельский С.И. Лекции по теории обучения в высшей школе. М., Высшая школа, 1974. - 383с.
14. Архангельский С.И. Учебный процесс в высшей школе. М., Высшая школа, 1980. - 368с.
15. Атанасян Л.С. Геометрия 4.1. М., Просвещение, 1973. - 480с.
16. Атанасян Л.С. и др. Геометрия 10-11 классы. М.: Просвещение, 2003.-206с.
17. Атанасян Л.С., АтанасянВ.А. Сборник задач по геометрии 4.1. — М., Просвещение, 1973. 256с.
18. Атанасян Л.С., БазылевВ.Т. Геометрия 4.1. М.: Просвещение, 1986.-336с.
19. Атанасян Л.С., Денисова Н.С., Силаев Е.В. Курс элементарной геометрии. Учебное пособие для студентов педагогических университетов и институтов. 4.1. М.: Изд-во "Принт", 1992. — 167с.
20. Атанасян Л.С., Денисова Н.С., Силаев Е.В. Курс элементарной геометрии. Учебное пособие для студентов педагогических университетов и институтов. 4.2. М.: Изд-во "Принт", 1992.-175с.
21. Бабанский Ю.К. Оптимизация процесса обучения. М.: Педагогика, 1977. - 254с.
22. Бабанский Ю.К. Рациональная организация учебной деятельности. М.: Знание, 1981. - 96с.
23. Баврин И.И. Общий курс высшей математики: Учеб. для физ.-мат. спец. пед. вузов. — М.: Просвещение, 1995. 462с.
24. Баврин И.И., Садчиков В.А. Новые задачи по стереометрии: Фигуры вращения правильных многогранников. -М.: Гуманит, изд. центр ВЛАДОС, 2000. -208с.
25. Базылев В.Т., Дуничев К.И., Иваницкая В.П. Геометрия. 4.1. М.: Просвещение, 1974.-351с.
26. Балл Г.А. В мире задач. Киев: Знание, 1986. - 48с.
27. Балл Г.А., Довгялло А.М., Машбиц Е.И. Формирование умственных действий при различных методах обучения решению задач //Психология формирования понятий и умственных действий.-М., 1966.-С.184-188.
28. Батьканова Н.И. Профессионально-педагогическая направленность обучения элементарной геометрии студентов педвузов. — Дис. . канд. пед. наук. — Саранск, 1995. — 168с.
29. Белешко Д.Т. Содержание и методика проведения в пединституте практикума по решению задач по математике. Дис. . . . канд. пед. наук. - Киев, 1988. -203с.
30. Богданова Д.А. Методика развития компьютерной грамотности в условиях дистанционного обучения. Автореф. дис. . канд. пед. наук. - М., 1996.-22с.
31. Божович JI.И. Личность и её формирование в детском возрасте. Психологические исследования. -М.: Просвещение, 1968. -464с.
32. Болтянский В.Г. Как устроена теорема? //Математика в школе. -1973. -№ 1. С.41 -49.
33. Болтянский В.Г., Глейзер Г.Д. К проблеме дифференциации школьного математического образования // Математика в школе. 1988.-№3.-С.9-13.
34. Бородина М.В. Профессионально-педагогическая направленность организации изучения функциональной линии в курсе математического анализа пединститута. Дис. . канд. пед. наук. -Мари-Эл, 1993.-177с.
35. Борчугова З.Г. О некоторых направлениях совершенствования профессионально-педагогической подготовки учителя математики// Научно-методические основы методической подготовки учителей математики. Л., 1980. - С.3-9.
36. Бровичева А.В. Адаптация будущих учителей начальной школы к профессональной математической подготовке в вузе. Дис. . канд. пед. наук. - Орел, 1997. - 183с.
37. Бызова В.М. Ценностные ориентации представителей коми и русского этносов// Психологический журнал. Т. 19. -1998. -№5-С.60-69.
38. Василевская Е.А. Профессиональная направленность обучения высшей математики студентов технических вузов. -Дис. . канд. пед. наук. М., 2000. - 229с.
39. Василевский А.Б. Задания по внеклассной работе по математике: 9-11 кл. Книга для учителя. -Мн.: Нар.асвета, 1988. -175с.
40. Василевский А.Б. Обучение решению задач. Мн.: Вышейшая школа, 1979. - 192с.
41. Венгер А.Л. Психологическое развитие ребенка в процессе совместной деятельности// Вопросы психологии. -2001. -№3. — С. 17-26.
42. Веннинджер М. Модели многогранников. М.: Мир, 1974-236с.
43. Вербицкий А.А. Новая образовательная парадигма и контекстное обучение / Монография. -М.: Иссл. центр проблем кач-ва подгот. спец., 1999.-75с.
44. Вербицкий А.А., Бакшаева Н.А. Развитие мотивации студентов в контекстном обучении. Монография. -М.: Иссл. центр проблем кач-ва подгот. спец., 2000. -200с.
45. Вересова Е.Е., Денисова Н.С., Полякова Т.Н. Практикум по решению математических задач: Учеб. Пособие. М.: Просвещение, 1979. - 240с.
46. Виленкин Н.Я. Математическая подготовка учителя математики в педагогических институтах СССР: Материалы Всесоюзной научной конференции. К., КГПИ им. А.М.Горького, 1983. -С.60-73.
47. Вилюнас В.К. Психологические механизмы мотивации человека. -М.: Изд-во МГУ, 1990. -288с.
48. Волова М.С. Система подготовки студентов к профессиональной деятельности в области решения физических задач. — Дис. . канд. пед. наук. М., 1988. - 223с.
49. Воронцова Т.В. Гуманитарно-педагогические основы интеграции непрерывного общего, профессионального образования и воспитания сельских учащихся. — Автореф. дис. . д-ра пед. наук. -М., 1998.-47с.
50. Выготский Л.С. Мышление и речь // Собрание соч. Т.2.-М.: Педагогика, 1982.- 504с.
51. ГавриловаМ.А. Компьютерная ориентация методической подготовки будущих учителей математики. Автореф. дис. .канд. пед. наук. М., 1994. - 16с.
52. Геометрия: Учеб. для 10-11 кл. сред. шк./Л.С.Атанасян,
53. B.Ф.Бутузов, С.Б.Кадомцев и др.-М.: Просвещение, 1992.-207с.
54. Гербеков Х.А. Дифференциальные уравнения в системе профессиональной подготовки учителя математики в педвузе. -Дис. . канд. пед. наук. -М., 1991. 198с.
55. Глейзер Г.Д. Проблемы индивидуализации и дифференциации обучения в вечерней школе. Л., АПН СССР, 1981. - 91с.
56. Государственный образовательный стандарт Российской Федерации. Система образования. Высшее профессиональное образование. //Высшее образование России. — М., 1993. — №3. —1. C.25-29.
57. Грабарь М.И., Краснянская К.А. Применение математической статистики в педагогических исследованиях. Непараметрические методы. М.: Педагогика, 1977. - 134с.
58. Грибов Ю.А. Условия развития творческого самовыражения учащихся и учителей // Вопросы психологии.-1989.-№2.-С.56-59.
59. Груденов И.Я. Изучение определений, аксиом, теорем: Пособие для учителей.-М.: Просвещение, 1981.-95с.
60. Груденов И.Я. Психолого-дидактические основы методики обучения математике. — М.: Просвещение, 1987. 158с.
61. Груде нов И.Я. Совершенствование методики работы учителя математики. М.:Просвещение, 1990. - 220с.
62. Гурова JI.JI. Психологический анализ решения задач. — Воронеж: ВГУ, 1977.-327с.
63. ГусевВ.А. Как помочь ученику полюбить математику? 4.1. -М: Авангард, 1994.-168с.
64. Гусев В.А. Методическая подготовка будущих учителей математики в педагогических институтах//Современные проблемы методики преподавания математики/Сост. Н.С. Антонов, В.А. Гусев-М.: Просвещение, 1985. С.8-19.
65. ГусевВ.А. Методические основы дифференцированного обучения математике в школе. Дис. . д-ра пед. наук.— М., 1990. -364с.
66. Гусев В.А., Литвиненко В.Н., Мордкович А.Г. Практикум по элементарной математике. Геометрия: Учеб. Пособие для студентов физ.-мат. спец. пед. ин-тов и учителей. 2-е изд., перераб. и доп. - М.: Просвещение, 1992. - 352с.
67. Давыдов В.В. Проблемы развивающего обучения. М.: Педагогика, 1986. - 240с.
68. Данилочкина Г.А. Индивидуализация обучения как средстворазвития познавательной самостоятельности учащихся (на материале преподавания математики в старших классах). -Автореф. дис . канд. пед. наук. М., 1973. — 33с.
69. Дидактика средней школы: Некоторые проблемы современной дидактики // Под ред. М.Н. Скаткина. 2-е изд., перераб. и доп. -М.: Просвещение, 1982. - 319с. - С.269-270.
70. Диков А.В. Компьютерная ориентация профессиональной подготовки учителей математики. Автореф. дис. . канд. пед. наук. - М., 1994.-21с.
71. Дорофеев Г.В. и др. Дифференциация в обучении математике //Математика в школе 1990. - №4. - С. 15-21.
72. Дорофеев Г.В., Потапов М.К., Розов Н.Х. Пособие по математике для поступающих в вузы. Избранные вопросы элементарной математики. М.: Наука, 1974.- 528с.,
73. Дуванова B.C. Обучение студентов поиску решения задач (на материале школьной алгебры и начал анализа). Автореф. дис. канд. пед. наук. - Минск, 1986. - 17с.
74. Дусавицкий А.К. Мотивы учебной деятельности студентов: Учебное пособие. -Харьков: ХГУ, 1987. -55с.
75. Дьяченко М.И., Кандыбович JI.A. Психология высшей школы. — Мн.: Университетское, 1993. 368с.
76. Евелина JI.H. Профессиональная направленность курса элементарной геометрии в педвузе. Дис. канд пед. наук. - М., 1993.-271с.
77. Зиновьев С.И. Учебный процесс в современной высшей школе. -М., 1975.-314с.92.3орина Л .Я. Слово учителя в учебном процессе. М.: Знание, 1984.-80с.
78. Иванников В.А. Психологические механизмы волевой саморегуляции. -М.: УРАО, 1998. -144 с.
79. Иванов О.А. Избранные главы элементарной математики. Учеб. пос. СПб.: Изд-во Санкт-Петербургского ун-та, 1995. - 224с.
80. Иванова Т.А. Гуманитаризация общего математического образования: Монография. Нижний Новгород: Изд-во НГПУ, 1998. -206с.
81. Извольский Н.А. Методика геометрии- Пб.: Брокгауз-Эфрон, 1924.-162с.
82. Ильин Е. Один печально остается //Учительская газета. 1975. — 15 марта.
83. Калашников В.Г. Динамика взаимосвязи самосознания, профессиональной направленности и ценностных ориентаций студентов педвуза (на материалах факультета начальных классов): Дис. .канд. пед. наук. -М., 1998. -225с.
84. Каплунович И .Я. Развитие пространственного мышления школьников в процессе обучения математике: Учебное пособие. -Новгород: НРЦРО, 1996. 100с.
85. Капустина Т.В. Теория и практика создания и использования в педагогическом вузе новых информационных технологий на основе компьютерной системы Mathematica-Автореф. дис. канд.пед.наук-М., 2001.-39с.
86. КасярумП.Р. Вопросы совершенствования профессиональной подготовки учителя математики средней школы в педагогическом институте-Дис. канд. пед. наук. Черкассы, 1971. - 251с.
87. КибалкоП.И. Профессиональная направленность преподавания курса математического анализа в педвузе. — Автореф. дис. . канд. пед. наук. — Минск, 1985. -22с.
88. Кикоть Е.Н. Формирование потребности в профессионально-ориентированных знаниях у студентов технических вузов — Дис. канд. пед. наук-Калининград, 1995.-201с.
89. КикнадзеД.А. Потребности. Поведение. Воспитание. М., 1968.-148с.
90. Клейн Ф. Элементарная математика с точки зрения высшей: В 2 т. Т.2. — Геометрия: пер. с нем. / Под ред. В.Г. Болтянского. -М.: Наука, 1987.-416с.
91. Кобыляцкий И.И. Основы педагогики высшей школы. Киев-Одесса, 1978.-287с.
92. Ковалев В.Н. Мотивы поведения и деятельности. — М.: Наука, 1988. -192с.
93. Колмогоров А.Н. Математика наука и профессия. - М.: Наука, 1988.-288с.
94. Колмогоров А.Н. Научные основы школьного курса математики// Математика в школе. 1969. - №3. - С. 12-17.
95. Колосов А.А. Книга для чтения по математике для учащихся IX класса. М.: Учпедгиз, 1960. - 231с.
96. Колягин Ю.М. Задачи в обучении математике. Математические задачи как средство обучения и развития учащихся средней школы. 4.1. М.: Просвещение, 1977. - 109с.
97. Колягин Ю.М. Задачи в обучении математике. Математические задачи как средство обучения и развития учащихся средней школы. 4.2. М.: Просвещение, 1977. - 144с.
98. Колягин Ю.М. и др. Методика преподавания математики в средней школе. Общая методика. Учеб. пособие для студентов физ.-мат. фак. пед. институтов-2-е изд., перераб. и доп. М.: Просвещение, 1980. - 386с.
99. Колягин Ю.М., Луканкин Г.Л. Основные понятия современного школьного курса математики. Пос. для учителей. Под ред. Маркушевича А.И. М.: Просвещение, 1974. — 382с.
100. Колягин Ю.М., Луканкин Г.Л., Ткачева М.В., Федорова Н.Е. Профильная дифференциация обучения математике// Математика в школе. 1990. - №4. - С.21-27.
101. Колягин Ю.М., Оганесян В.А. Учись решать задачи: Пособие для учащихся 7-8 кл. М.: Просвещение, 1980. - 96с.
102. Комусова Н.В. Развитие мотивации к овладению профессией в период обучения в вузе. — Дис. канд.псих, наук—Л., 1983.-265с.
103. Корешкова Т.А. Научно-методические основы взаимосвязи математических курсов педвуза и школьного курса математики (на примере курса «Интегральное исчисление функций одной переменной»). Автореф. дис. . канд. пед. наук. - М., 1991. -16с.
104. Костицын В.Н. Вернуть в педвузы курс начертательной геометрии // Математика в школе. №5. -1997 - С.83-85.
105. Костицын В.Н. Моделирование на уроках геометрии: Теория и метод, рекомендации. — М.: Гуманит. изд. центр ВЛАДОС, 2000. -160с.
106. Крайзман М.Л. О развитии творческого мышления учащихся в преподавании геометрии // Математика в школе. -1955. -№6. — С.61-67.
107. КрупичВ.И. Теоретические основы обучения решению школьных математических задач. Дис. . д-ра пед. наук. — М., 1992.-395с.
108. Крутецкий В.А. Основы педагогической психологии. М., Просвещение, 1972.-224с.
109. Крылов В.В. Установление содержательных взаимосвязей учебного материала на практикуме по решению математических задач посредством качественных заданий. -Дис. . канд. пед. наук. СПб., 2000. - 128с.
110. Кудрявцев Л.Д. Мысли о современной математике и ее изучении. — М.: Наука, 1977. -194с.
111. Кузьмина Н.В. Формирование педагогических способностей. — Л.: Изд-во ЛГУ, 1970. 114с.
112. Куликова Л.Г. Формирование профессиональной готовности студентов педвузов в процессе изучения курса «Элементарная математика». Дис. канд. пед. наук. - Калуга, 2000. - 206с.
113. КулюткинЮ.Н. Психология обучения взрослых. М.: Просвещение, 1985. -128с.
114. КулюткинЮ.Н., СухобскаяГ.С. Мотивация познавательной деятельности.-М.: Просвещение, 1972—214с.
115. Куриленко Т.М. Основы учебно-воспитательной работы со студентами младших курсов. Мн.: Выш. шк., 1979. - 104с.
116. Курс элементарной математики в системе подготовки учителя: Тезисы докладов X Всероссийского семинара преподавателей математики педвузов. Чебоксары, 1992. — 134с.
117. ЛадыжецН.С. Университетское образование: идеалы, цели, ценностные ориентации: Монография. — Ижевск: Филиал изд-ва Нижегор. ун-та при УдГУ, 1992. 236с.
118. ЛарькинаЕ.В. Методика формирования элементов исследовательской деятельности учащихся основной школы на уроках геометрии. Автореф. дис. .канд. пед. наук. - М., 1996. -16с.
119. Леонтьев А.Н. Деятельность. Сознание. Личность. — М.: Политиздат, 1975. 322с.
120. Леонтьев А.Н. Потребности, мотивы и эмоции. Конспект лекций. -М.: Изд-во Моск. ун-та, 1971.-40с.
121. Леонтьев А.Н. Психологические механизмы мотивации учебной деятельности. Учеб. пособие. Новосибирск, НГПИ, 1987.-92 с.
122. Лепман Л.О. Предметная подготовка учителей математики к возможности ее совершенствования Автореф. дис. . канд. пед. наук. -М.-15с.
123. Лернер И.Я. Качества знаний учащихся. Какими они должны быть? М.: Знание, 1978. - 48с.
124. Лисина М.И., Галагузова Л.Г. Становление потребностей детей в общении со взрослыми и сверстниками// Исследования попроблемам возрастной и педагогической психологии. -М.: Просвещение, 1980. С.55-78
125. Литвиненко В.Н., Мордкович А.Г. Практикум по решению математических задач: Алгебра. Тригонометрия. М.: Просвещение, 1984. - 288с.
126. Литвиненко В.Н. Практикум по решению задач школьной математики: Геометрия. М.: Просвещение, 1982. - 159с.
127. Литвиненко В.Н. Сборник задач по стереометрии с методами решений: Пособие для учащихся. -М.: Просвещение, 1998. 255с.
128. ЛитвудДж. Математическая смесь: Пер. с англ. -5-е изд., испр. М.: Наука, 1990. -140с.
129. Ломов Б.Ф. Вопросы общей педагогики и инженерной психологии. М.: Педагогика,1991. -296с.
130. Луканкин Г.Л. Научно-методические основы профессиональной подготовки учителя математики в педагогическом институте.- Дис. . д-ра пед. наук в форме научного доклада. Л., 1989. - 59 с.
131. Лукьянова М. Учебная мотивация как показатель качества образования //Народное образование. -2001. -№8. -С.77-89.
132. Люсьен Феликс. Элементарная математика в современномизложении. -М: Просвещение, 1967.^88с.
133. Манвелов С.Г. Задания по математике на развитие самоконтроля учащихся. — М.: Просвещение, 1997. — 143с.
134. Манвелов С.Г. Теория и практика современного урока математики. Автореф. дис. . д-ра пед. наук. - М., 1998. - 35с.
135. Мантуров О.В., Матвеев Н.М. Курс высшей математики. Линейная алгебра. Аналитическая геометрия. Дифференциальное исчисление функций одной переменной: Учеб. для втузов. — М.: Высшая школа, 1986. 480с.
136. Марина Е.В. Гуманитарная направленность курса «Практикум по решению математических задач» для студентов педвузов. — Дис. . канд. пед. наук. Пенза, 2000. - 182с.
137. Маркова А.К. Психология профессионализма. М.: Знание, 1996.-308с.
138. Маркова А.К. Психология труда учителя. М.: Просвещение, 1993. - 192с.
139. Маркова А.К. Формирование мотивации учения в школьном возрасте. Пособие для учителя. М.: Просвещение, 1983. -96с.
140. Маркова А.К., МатисТ.А., Орлова А.Б. Формирование мотивации учения. — М.: Просвещение, 1990. -192с.
141. Мартынова Е.В. Смысложизненные ориентации как фактор личностной подготовки студентов педвузов. — Автореф. дис. .канд. пед. наук. М., 2002. - 25с.
142. МартынюкО.И. Профессиональная направленность курса элементарной математики при подготовке учителей к работе в классах с малой наполняемостью. -Дис. . канд. пед. наук. -М., 1998.-198с.
143. МатюшкинМ.А. Психологическая структура, динамика и развитие познавательной активности// Вопросы психологии. — 1982.-№4.-С. 5-7.
144. Метельский Н.В. Научно-методические основы современной подготовки студентов-математиков к учительской деятельности. -Дис. .д-ра пед. наук в форме научного доклада. М, 1986. - 49 с.
145. Методика преподавания математики// Программы педагогических институтов. Сборник №6. М.: Просвещение,1984. — С. 14-18.
146. Методика преподавания математики в средней школе. Общая методика// Учебное пособие для пединститутов. В.А.Оганесян, Ю.М.Колягин, Г.Л.Луканкин, В.Я.Саннинский. М., 1975.-46 с.
147. Методика преподавания математики в средней школе. Общая методика/ Сост. Р.С.Черкасов, А.А.Столяр. М.: Просвещение,1985.-336с.
148. Методика преподавания математики в средней школе. Частная методика: Учебное пособие для студентов пед. институтов по физ.-мат. спец. /АЛ.Блох, В.А.Гусев, Г.В.Дорофеев и др.; Сост. В.И.Мишин. М.: Просвещение, 1987. — 416с.
149. Методика преподавания математики в средней школе. Частные методики. //Учебное пособие для студентов физ.-мат. фак. пединститутов. В.А.Оганесян, Ю.М.Колягин, Г.Л.Луканкин, В .Я.Саннинский. М., 1977. - 480с.
150. Мешков Н.И. Мотивация учебной деятельности студентов: Учеб. пособие. — Саранск: Изд-во Мордовского университета, 1998.-184с.
151. МигановаЕ.Ю. Методика конструирования систем учебныз математических задач (на примере курса геометрии педвуза): Учеб. пособие для студ. мат. спец. пед. вузов. -Арзамас: Ai 1Ш, 2001.-96с.
152. Митина Л.М. Личностное и профессиональное развитие человека в новых социально-экономических условиях // Вопросы психологии. 1997. -№4. - С.28-38.
153. Митина JI.М. Психология профессионального развития учителя—М.: Моск. психол.-соц. ин-т: Флинта, 1998.-201с.
154. Моисеев С.А. Система организации самостоятельной работы студентов при изучении курса алгебры и теории чисел в педагогическом институте Дис. . канд. пед.наук. - М., 1992. -192 с.
155. Монахов В.М. Обновление методической системы обучения //Сов. педагогика. 1989. - №1. - С.28-33.
156. Монахов В.М. Перспективы разработки и внедрения новой информационной технологии обучения на уроках математики // Математика в школе. — 1991. — №3. — С.58-62.
157. Монахов В.М., Орлов В.А., Фирсов В.В. Дифференциация обучения в средней школе // Сов. педагогика. 1990. - №8. -С.42-47.
158. Мордкович А.Г. Обеспечивая педагогическую направленность // Вестник высшей школы. 1985. - №12. - С.22-26.
159. Мордкович А.Г. Профессионально-педагогическая направленность специальной подготовки учителя математики в педагогическом институте. Дис. . д-ра пед. наук. - М., 1986. -416с.
160. Морозова И.С. Мотивация как фактор оптимизации мыслительного процесса. Дис. . канд. пед. наук. — М., 1991. — 170с.
161. Мухин А.Е. Профессионально-педагогическая направленность курса математического анализа в педагогическом институте и ее реализация путем формирования системы упражнений.- Дис. . канд. пед. наук. М., 1986. - 220с.
162. Мясищев В.Н. Способности и потребности // Ученые записки ЛГУ, 1960.-№287.-С.19-31.
163. Назаревский Г.А. О развитии пространственного представления на уроках геометрии// Математика в школе. -1951. №5. С.37-51.
164. Неискашева Е.В. Профессиональная направленность обучения студентов педвузов в процессе углубленного изучения понятия числа. Дис. . канд. пед. наук. - М., 1999. - 212с.
165. НемовР.С. Психология: Учебник для студентов высш. пед. учеб. заве д. В 3-х книгах. Книга 1. Общие основы психологии. -М.: Владос, 1997. -688с.
166. Немытова М.И. Дифференцированный подход к учащимся при обучении началам анализа. — Дис. . канд. пед. наук. — Ташкент, 1992.-168с.
167. НизамовР.А. Дидактические основы активизации учебной деятельности студентов. Казань, 1975. - 302с.
168. НиконоваЕ.Ю. Особенности содержания математического образования учащихся классов экономического направления-Автореф. дис. канд.пед.наук. -М., 1995. — 16с.
169. Никулина С.В. Развитие пространственного воображения у студентов-математиков классического университета при подготовке к математической деятельности. — Дис. .канд. пед. наук. -Ярославль, 2001. -163с.
170. Новожилов Э.Д. О логике научного педагогического исследования/ Профессиональная подготовка в высшей педагогической школе накануне XXI века. Межвуз. сб. науч. тр. — М., 1997.-С.6-25.
171. Орлов Ю.М., Творогова М.Д., ШкуркинВ.И. Стимулирование побуждения к учению. М., 1998. -119с.
172. Орловский В.Г. Методы совершенствования самостоятельной работы учащихся. — Дис. канд. пед. наук. М., 1996. - 165с.
173. Петрова Е.С. Система методической подготовки будущего учителя математики по углубленному изучению математики.-Дис. .д-ра пед. наук. Саратов, 1998. - 456с.
174. Пидкасистый П.И. Самостоятельная познавательная деятельность школьников в обучении: Теоретико-экспериментальное исследование. — М.: Педагогика, 1980. — 240с.
175. Пидкасистый П.И., Гарунов М.Г. Самостоятельная работа студентов. М.: Знание, 1978. - 35с.
176. Пидкасистый П.И., Коротяев Б.И. Организация деятельности ученика на уроке. — М.: Знание. 1985. - 80с.
177. Погорелов А.В. Геометрия. Учебник для 7-11 кл. общеобразоват. учреждений. 5-е изд. - М.: Просвещение, 1995. -383с.
178. Погорелов А.В. Геометрия: Учеб. для 7-11 кл. сред.шк. — М.: Просвещение, 2000. -383с.
179. Подходова Н.С. Формирование пространственных представлений младших школьников при изучении геометрического материала. Автореф. дис. .канд. пед. наук. — СПб., 1992.-22с.
180. Пойа Д. Как решать задачу? М., 1961. - 208с.
181. Пойа Д. Математическое открытие. М., Наука, 1970. - 452с.
182. Пойа Д. Обучение через задачи //Математика в школе. — 1970. -№3. С.89-91.
183. Пономарева Т.Х. Методические особенности обучения математике в старших классах технического направления: Автореф. дис. канд. пед. наук. -М., 1992. 17с.
184. Практикум по решению задач// Программы педагогических институтов. Сб. №6. -М.: Просвещение, 1984. С.19-22.
185. Проблемы научно-методического обеспечения учебного процесса: Тезисы Всероссийского семинара преподавателей математики педвузов. — М.: МГЗПИ; Рязанский пединститут. -Рязань, 1991.- 152с.
186. Проблемы подготовки учителя математики в пединституте/ Межвузовский сборник научных трудов. — М.: МГЗПИ, 1987. -174с.
187. Психолого-педагогические основы преподавания математических дисциплин в пединституте. Обучение и развитие. Ульяновск: УГПИ им. И.Н.Ульянова, 1991. - 204с.
188. Развитие творческой активности школьников/Под ред. A.M. Матюшкина. -М.: Педагогика, 1991. -160с.
189. Реан А.А., Коломинский А.Л. Социальная педагогическая психология. СПб.: Изд-во «Питер», 1999. -416с.
190. РедяГ.Л., Родионов М.А. Новые ценности образования: гуманистический подход к обучению. — Пенза, 1996. — 52с.
191. Рогановский Н.М., Столяр А.А. Основы современной школьной математики. 4.1. — Минск: Нар. асвета, 1975 — 221с.
192. Рогановский Н.М., Столяр А.А. Основы современной школьной математики. 4.2. Минск, Нар. асвета, 1975- 178с.
193. Родионов М.А. Теория и методика формирования мотивации учебной деятельности школьников в процессе обучения математике. Дис. д-ра пед. наук - Саранск, 2001. —379с.
194. Родионов М.А., Садовников Н.В. Математические задачи и их развивающая роль. Рекомендации по методике преподавания математики для студентов педагогических институтов и учителей математики. Пенза, 1994. - 46с.
195. Ротенберг B.C., Бондаренко С.М. Мозг. Обучение. Здоровье: Кн. для учителя. М.: Просвещение, 1989. -239с.
196. Рыжова Н.П. Взаимосвязь специальной и методическойподготовки при изучении алгебры и теории чисел в педагогическом институте.— Дис. .канд. пед. наук. Самара, 1994.-170с.
197. Саадян М.К. Методическая система обучения студентов педвузов решению математических задач. Дис.канд. пед. наук - Кировакан, 1993. -169с.
198. Саввина О.А. Теоретические основы взаимосвязи школьного курса математики и педвузовского курса математического анализа. -Дис. .канд. пед. наук.-М., 1996. 175с.
199. Садовников Н.В. Профессионально-педагогическая направленность обучения решению задач при изучении методических дисциплин в педагогическом вузе. — Дис. .канд. пед. наук. -М., 1996. 205с.
200. Сазонова A.M. Профессионально-педагогическая подготовка студентов при обучении их в курсе геометрии педагогических вузов,- Автореф. дис. .канд.пед.наук. -М., 1994. 18с.
201. Самсонова С.А. Повышение эффективности профессиональной подготовки учителей математики в педвузе на основе использования стохастики. М., 1997. -128с.
202. Саранцев Г.И. Методика обучения в средней школе: Учебн. пособие для студентов мат. спец. пед. вузов и ун-тов. —М.: Просвещение, 2002. -224с.
203. Саранцев Г.И. О профессиональной подготовке учителя математики // Математика в школе. 1990. - №4. — С. 11-13.
204. Саранцев Г.И. Обучение математическим доказательствам в школе. М.: Просвещение, 2002. - 173с.
205. Саранцев Г.И. Система задач на геометрические преобразования в курсе математики 8-летней школы.- Дис. .канд. пед. наук.-М., 1971.-280с.
206. Саранцев Г.И. Теоретические основы методики упражнений поматематике. Дис. .д-ра пед. наук. - М., 1985. - 303с.
207. Саранцев Г.И. Формирование познавательной самостоятельности студентов педвузов в процессе изучения математических дисциплин и МПМ.-Саранск: Морд. гос. пед. ин-т, 1997. -160 с.
208. Сборник задач по геометрии: Учеб. пособие //В.Г.Базылев, К.И. Дуничев, В.П.Иваницкая и др. Под ред. Базылева В.Г.- М.: Просвещение, 1980.-238с.
209. Свириденкова Н.Г. Вариативные учебные технологии как средство формирования положительной мотивации учебной деятельности на уроках физики. — Дис. канд. пед. наук.— Екатеринбург, 1998. -175с.
210. Селютин В.Д. Научные основы методической готовности учителя к обучению школьников стохастике: Монография.-Орел: ОГУ, 2002.-200С.
211. Силаев Е.В. Формирование приемов умственной деятельности при решении геометрических задач. Уч. пособие для студентов физ.-мат. факультетов педагогических университетов и институтов. М.: Прометей, 1994. - 57с.
212. Сластенин В.А. Формирование личности учителя советской школы в процессе профессиональной подготовки. — М.: Просвещение, 1976.- 160с.
213. Смирнов Е.И. Технология наглядно-модельного обучения математике: Монография Ярославль: ЯГПУ им. К.Д.Ушинского, 1998. -313с.
214. Смирнова И.М. В мире многогранников: Кн. для уч-ся.-М.: Просвещение, 1995.-143с.
215. Смирнова И.М. Геометрия: Учеб. пос. для 10-11 кл. гуманит. профиля. — М.: Просвещение, 1997-159с.
216. Смирнова И.М. Методика преподавания стереометрии в условиях дифференцированного обучения. — М.: Изд-во Прометей МПГУ им. В.И.Ленина, 1994. 98с.
217. Смирнова И.М. Научно-методические основы преподавания стереометрии в условиях дифференцированного обучения. — Дис. . .д-ра пед. наук. М., 1994.
218. Смирнова И.М., Смирнов В.А. Геометрия: Учеб. пос.для 10-11 кл. естественнонаучного профиля обучения. — М.: Просвещение. 2001.-238с.
219. Совертков П.И. Обсуждаем вузовскую реформу // Математика в школе.-1997.-№1.-С. 38.
220. Современные основы школьного курса математики: Пос. для ст-в пед. ин-тов/ Н.Я.Виленкин, К.И.Дуничев, Л.А.Калужний А.А.Столяр.-М.: Просвещение, 1980.-240с.
221. Стефанова Н.Л. Теоретические основы развития системы методической подготовки учителя математики в педагогическомвузе.- Дис.д-ра пед. наук.-С-Пб., 1996.-366с.
222. Талызина Н.Ф. Теоретические основы разработки модели специалиста. М.: Знание, 1986. 108с.
223. Тихомиров O.K. Познавательные потребности/ Проблемы формирования социогенных потребностей. Тбилиси, 1974. -С. 102-163.
224. Тихомиров O.K. Психологические механизмы целеообразования. -М., 1977.-189с.
225. Тульчинский М.Е. Качественные задачи по физике в средней школе. Пособие для учителей.-М.: Просвещение, 1972.-240с.
226. УзнадзеД.Н. Психологические исследования. М., 1966-451с.
227. Фастовец И.В. Формирование профессионально-педагогической направленности личности учителя. — Дис. . канд. псих. наук.-М., 1991.-198 с.
228. Федяев О.И. Элементарная математика в системе профессиональной подготовки учителя математики. Автореф. дис. канд. пед. наук.-М., 1994.- 17с.
229. Фридман Л.П. Логико-психологический анализ школьных учебных задач. М.: Педагогика, 1977. - 208с.
230. Фридман Л.П. Психолого-педагогические основы обучения математике в школе. М.: Просвещение, 1983. - 160с.
231. Фридман Л.П., Турецкий Е.Н. Как научиться решать задачи? Пособие для учащихся М.: Просвещение, 1984. - 175с.
232. Фройденталь Г. Математика как педагогическая задача. 4.1.
233. М.: Просвещение, 1982. -208с.
234. Фройденталь Г. Математика как педагогическая задача. 4.1. -М.: Просвещение, 1983. 199с.
235. Хамов Г.Г. Методическая система обучения алгебре и теории чисел в педвузе с точки зрения профессионально-педагогического подхода. Автореф. дис. . д-ра пед. наук. - СПб, 1994. - 33с.
236. Харитонова Н.В. Организация самостоятельной работы студентов при обучении математике в вузе. -Автореф. дис. . канд. пед. наук. Саранск, 1996. - 18с.
237. Хекхаузен X. Мотивация и деятельность: В 2 т.Т.1.-М.,1986.-408с.
238. ХмараС.А. Особенности формирования профессиональных ценностных ориентаций молодого учителя. Дис. . канд. пед. наук. - Хабаровск, 1996. -252с.
239. Хижнякова Л.С. Методические основы построения процесса обучения физике в средней школе в условиях всеобщего среднего образования. Дис. . д-ра пед. наук. - М., 1988. - 378с.
240. ХодееваЕ.В. Методика изучения многогранников в средней школе на основе фузионистской концепции. — Дис.канд. пед. наук. — М., 2001.-220с.
241. Черкавский Н.И. Формирование профессионально-методических умений студентов пединститута на занятиях практикума по решению физических задач. — Дис. . канд. пед. наук.-Л., 1983.-216с.
242. Черкасов Р.С. Методическая подготовка учителя математики в педвузе// Математика в школе. 1976. - №5. - С.80-82.
243. Чудновская В.Э. Личностная модель труда учителя// Вопросы психологии. -1999. -№2. -С. 107-109
244. Шабунин М.И. Научно-методические основы углубленной математической подготовки учащихся средних школ и студентоввузов. — Дис. . д-ра пед. наук в форме научного доклада. М., 1994.-28с.
245. Шаманова Л.И. Теоретические основы взаимосвязи школьной математики и спецдисциплин в педвузе. — Автореф. дис. . канд. пед. наук. -М., 1997. 16с.
246. Шарыгин И.Ф. Геометрия. 10-11 кл.: Учеб. для общеобразоват. учеб. заведений. М.: Дрофа, 1999. -208с.
247. Шарыгин И.Ф., Голубев В.И. Факультативный курс по математике: Решение задач: Учеб пособие для 11 кл. сред, шк-М.: Просвещение, 1991.-384 с.
248. Ширшова Т.А. Математическое образование старшеклассников с гуманитарными наклонностями как методическая проблема (на примере историко-филологической специализации).- Автореф. дис. . канд. пед. наук. Омск, 1994. -18с.
249. Штейнгауз Г. Сто задач. М: Наука, 1976. -168с.
250. Шохор-Троцкий С.И. Учебник геометрии для средних учебных заведений с приложением дополнительных статей.—М.: Изд-во А. А.Карцева, 1891 .-311 с.
251. Щербаков А.И. Некоторые вопросы совершенствования подготовки учителя // Советская педагогика. -1971. №9. - С .8289.
252. Щербаков А.И. Профессиограмма учителя советской школы //Проблемы профессиональной подготовки студентов педвузов и университетов. Сб. науч. тр. /НИИ общей педагогики и психологии АПН СССР. М., 1976. - С.24-33.
253. Щербаков А.И. Психолого-педагогические основы формирования личности советского учителя в системе высшего педагогического образования. — Л., Просвещение, 1967. — 266с.
254. Эсаулов А.Ф. Психология решения задач. М.: Высшая школа,1972.-216с.
255. Юрзанова Т.К. Повышение эффективности профессиональной подготовки будущих учителей математики на основе использования курсов по выбору. — Дис. . канд. пед. наук. — М., 1996.-216с.
256. Юшчак К.А. Актуализация профессионально-ценностных ориентаций студентов в процессе высшего педагогического образования в Польше- Дис.канд. пед. наук.- Щецен, 2000-198с.
257. Якиманская И.С. Развитие пространственного мышления школьников.-М.: Педагогика, 1980—240с.
258. Якобсон П.М. Психологические проблемы мотивации поведения человека.-М.: Просвещение, 1969.-317с.
259. Яковлев Г.Н. и др. Всероссийские математические олимпиады школьников. Кн. для уч-ся М.: Просвещение, 1992. - 382с.
260. Яновская М. .И быть человеком. М., 1980. - С.6-9.
261. Ястребова Е.Б. Развитие познавательной самостоятельности студентов мл. курсов. -Дис. канд. пед. наук. М., 1994. -255 с.
262. College algebra by Lewis M. Reagan, Ellis R. Ott, Paniel T. Sigley. Farrar & Reprint Inc. New York, 1934. - 228p.
263. Csikzentmihalye M. Emergent motivation and the evolution of the self. -In: Advances in motivation and achievement. —V4. -JAI Press Inc., 1985.-P. 93-119.
264. Csikzentmihalye M. The dinamics of intrinsic motivation: a study of adolescents. -In: Ames C., Ames R. (Eds) Research on motivation in education. -V4. N 4: Academic Press, 1989. P. 45-71.
265. Dweck C.S. Self-theories: Their role in motivation, personality and development. -Philadelphia: Psychology Press, Taylok & Francis Group, 1999. -195p.