автореферат и диссертация по педагогике 13.00.02 для написания научной статьи или работы на тему: Создание и использование комплекса моделей атомов и молекул для изучения строения вещества в курсе химии средней школы
- Автор научной работы
- Кожевников, Дмитрий Николаевич
- Ученая степень
- кандидата педагогических наук
- Место защиты
- Москва
- Год защиты
- 2004
- Специальность ВАК РФ
- 13.00.02
Автореферат диссертации по теме "Создание и использование комплекса моделей атомов и молекул для изучения строения вещества в курсе химии средней школы"
На правах рукописи
КОЖЕВНИКОВ Дмитрий Николаевич
Создание и использование комплекса моделей атомов и молекул для изучения строения вещества в курсе химии средней школы
13.00.02 - теория и методика обучения и воспитания (химии в общеобразовательной школе) (по педагогическим наукам)
Автореферат диссертации на соискание ученой степени кандидата педагогических наук
Москва
-2004
• 2 Работа выполнена в Институте содержания и методов обучения Российской академии образования
Научный руководитель: член-корреспондент РАО,
доктор педагогических наук, профессор Т.С. Назарова
Официальные оппоненты: доктор педагогических наук,
профессор, О.С. Зайцев
кандидат педагогических наук, доцент Т. А. Боровских
Ведущая организация:
Московский государственный областной университет
Защита состоится « /Л 2004 года в__ часов на
заседании диссертационного совета Д 008.008.05 по защите диссертаций на соискание учёной степени кандидата педагогических наук в Институте содержания и методов обучения РАО по адресу: 119435, Москва, ул. Погодинская, д.8.
С диссертацией можно ознакомиться в библиотеке Института.
Автореферат разослан « у> 2004 года.
Ученый секретарь диссертационного совета, кандидат педагогических наук
Т.А. Козлова
Общая характеристика исследования
Актуальность исследования. Знание электронного строения атомов обеспечивает систематичность изложения школьного курса химии и глубокое понимание периодического закона Д.И. Менделеева, на основе которого сформирована система понятий о химической связи, степени окисления и электроотрицательности элементов.
При обучении большую роль играют средства наглядности, обеспечивающие возможность демонстрации, создания образа изучаемого объекта или явления. Практика обучения химии показала, что особое значение имеет применение моделей при изучении процессов, которые невозможно наблюдать из-за большой разницы временных или пространственных масштабов. Модель оказывается единственным объектом, который является носителем информации о процессе или явлении. В такой ситуации большое значение имеет модельный эксперимент - особая форма эксперимента, для которой характерно использование моделей в качестве специальных средств экспериментального исследования. К модельному эксперименту, в котором вместо самого объекта изучается замещающая его модель, прибегают в случаях, когда объект исследования недоступен наглядному созерцанию, что имеет место при моделировании микрообъектов - атомов, молекул, кристаллов.
Развитие химии как науки и совершенствование методик и технологий обучения приводит к появлению новых моделей. Однако существенным фактором, препятствующим созданию и использованию моделей является проблема адаптации научных данных к процессу обучения в школе: упрощение моделей связано с погрешностями в отображении свойств объектов. Адаптация научных моделей к специфике обучения приводит нередко к конфликту между научной достоверностью и формируемым дидактическим образом объекта. Дидактический образ-модель рассматривается как конечная цель обучения с чётко выраженными параметрами, которые должны быть ему сообщены (Т. С. Назарова). Ни один из видов моделей в силу различия их дидактических возможностей не может полностью обеспечить целостное представление изучаемого объекта или явления, что указывает на целесообразность создания комплекса моделей, воплощённого в различных видах средств обучения химии.
Актуальность настоящего исследования определяется потребностью создания комплекса учебных взаимосвязанных и взаимно совместимых моделей, обладающего научной достоверностью и широкими дидактическими свойствами, на основе которых достигается системность знания о строении вещества и доступность его усвоения учащимися при использовании такой формы обучения как модельный эксперимент. Проблема исследования заключается в противоречии между необходимостью информирования учащихся в соответствии с уровнем современного развития науки и малой информационной ёмкостью традиционных дидактических средств - моделей атомов и молекул; между потребностью внедрения относительно новой формы обучщщ м-едельного
1 ; ** НО? ! .1*1 пило /
" "^и НО/!\Л ! , ИДЯ (
эксперимента и недостаточной наглядностью, а часто и взаимной несовместимостью используемых моделей.
Объектом исследования является процесс изучения строения вещества с использованием моделей атомов и молекул в курсе химии средней школы. Предмет исследования: теория и практика создания и использования комплекса моделей атомов и молекул для изучения строения вещества в курсе химии средней школы.
Цель исследования: определение путей и способов создания и использования комплекса современных моделей атомов и молекул для изучения строения веществ, их физических и химических свойств. Гипотеза исследования: если комплекс учебных моделей атомов и молекул, созданный с учетом современных тенденций моделирования на основе традиционных и новых моделей, будет отвечать требованиям высокой информационной ёмкости, обладать широкими дидактическим возможностями и использоваться для внедрения новой формы обучения -модельного эксперимента, то это будет способствовать: формированию у учащихся целостного и осознанного знания о строении вещества; пониманию свойств веществ; углублению и долговременному сохранению знаний; укреплению междисциплинарных связей и созданию единой научной картины мира. Задачи исследования
1. Провести анализ содержания курса химии 8-11 классов по вопросам строения вещества и его обеспечения средствами наглядного моделирования.
2. Сформулировать педагогико-эргономические требования к моделям и сформировать единый комплекс взаимно непротиворечивых научно обоснованных учебных моделей (включающий в себя как традиционно используемые, так и новые кольцегранные модели), обеспечивающий достижение педагогических целей наиболее эффективными способами.
3. Разработать методические приёмы использования комплекса учебных моделей, включая кольцегранные, проверить возможность проведения с их помощью модельных экспериментов, оценить педагогическую эффективность его использования в школьной практике.
Методологической основой исследования являются фундаментальные исследования в области дидактики, психологии, теории создания и использования различных видов средств обучения и их комплексов (A.A. Грабецкий, JI.C. Зазнобина, A.A. Макареня, Е.Е. Минченков, Т.С. Назарова, С.Г. Шаповаленко), методики обучения химии (О.С. Зайцев, Н.Е. Кузнецова, JI.A. Цветков, Г.М. Чернобельская, И.Н. Чертков), психолого-педагогические и эргономические теории (В.В. Давыдов, В.П. Зинченко, В.М. Мунипов), результаты анализа научно-технических достижений в области создания моделей элементарных частиц, атомов и их химических соединений. Методы исследования
• Анализ педагогической, методической, химической, психолого-педагогической литературы по вопросам теории познания и управления процессом усвоения знаний, проектирования и создания средств обучения
по проблемам строения вещества, создания и использования моделей при изучении структуры вещества. ® Наблюдение и обобщение педагогического опыта школьных занятий, опыта передовых учителей и методистов,' педагогических иннбваций, а также опыта внешкольной кружковой работы учащихся.
• Экспериментальная проверка сравнительной педагогической эффективности влияния отдельных моделей и комплекса в целом на качество обучения.
Этапы исследования
На первом этапе (1996-1998 гг.)определены прЬблёмы и трудности, с которыми сталкиваются учителя и ученики при изучении строения вещества в курсе химии средней школы, связанные со сложным строением атома и насущной необходимостью знания закономерностей его строения. Определён способ решения проблем усвоения учебного материала и создания условий повышения качества знания путём с помощью1 комплекса моделей, отличающегося взаимосвязанностью всех компонентов и новыми дидактическими возможностями.
На втором этапе (1999-2001 гг.) рассмотрены тенденции современного моделирования, педагогико-эргономические требования, предъявляемые к моделям, предложен комплекс учебных моделей, включающий новые кольцегранные модели, и рассмотрены дидактические возможности комплекса.
На третьем этапе (2002-2003 гг.) определены приёмы и способы использования комплекса моделей для изучения строения вещества, составлены методические рекомендации и проверена педагогическая эффективность его использования.
Научная новизна и теоретическая значимость исследования
® Разработана концепция создания и использования комплекса учебных моделей атомов и молекул для изучения строения вещества, включающая основные и специфические педагогико-эргономические требования, предъявляемые к используемым моделям с учётом современных тенденций моделирования.
• Предложена серия новых учебных моделей, представляющих собой необходимые компоненты для создания комплекса средств наглядного моделирования, отвечающих современным педагогико-эргономическим требованиям.
® Разработаны методические приёмы использования комплекса моделей, включая кольцегранные, для обучения химии в средней школе, обеспечивающие эффективность усвоения знаний учащимися. Практическая значимость результатов исследования
• Сформирован комплекс учебных моделей атомов и молекул, включающий новые кольцегранные модели.
• Разработаны и освоены производством наборы кольцегранных моделей и созданы компьютерные графические программы для ознакомления с кольцегранниками.
в Подготовлена к внедрению в школу серия таблиц по теме «Строение вещества», разработанная на базе комплекса учебных моделей атомов и молекул с включением колыдегранных.
• Составлены методические рекомендации по использованию комплекса учебных моделей атомов и молекул в обучении.
Положения, выносимые на защиту
1. Концепция создания и использования комплекса учебных моделей атомов и молекул для обучения химии в 8-11 классах и его методического обеспечения, включающая:
• специфику создания учебных моделей в соответствии с дидактическим принципом наглядности, его философской и психологической интерпретацией в обучении, базирующейся на современных тенденциях научного моделирования;
• проблему интеграции разных моделей в комплекс, включающий необходимое и достаточное число средств обучения для усвоения и развития необходимых знаний и понятий.
2. Педагогико-эргономические требования, являющиеся фундаментом проектирования комплекса учебных моделей с включением новых кольцегранных моделей атомов и молекул, обеспечивающих содержательно-информационные и инструментально - деятельностные аспекты обучения в соответствии с общими и специальными требованиями (научности, информативности, доступности, преемственности, адаптивности, совместимости, технологичности, иитерактивности).
3. Методические приёмы, организационные методы и методические рекомендации использования комплекса моделей с включением кольцегранных моделей для изучения строения вещества в курсе химии средней школы.
Апробация и внедрение результатов исследования
Результаты исследования внедрены в практику в виде конкретных
средств обучения и руководств по использованию.
Основные теоретические положения и результаты данного исследования
излагались на следующих конференциях, конгрессах и симпозиумах:
• "Проблемы моделей и моделирования на уроках физики и химии", Научно-практическая конференция, г. Вятка, Педагогический Университет, 16-17.10.1997 г.
• "Фундаментальные Проблемы Естествознания", Международный научный конгресс, г. Санкт-Петербург, 22-27.06.1998 г.
• Международная конференция по росту и физике кристаллов, Москва, 19.11.1998г.
• "Педагогические технологии в средней общеобразовательной школе: проблемы и перспективы". Научно-практическая конференция молодых ученых, Москва, ИОСО РАО, 27 апреля 1999 г.
• "HYPOTHESIS III", Международный симпозиум, г. Санкт-Петербург, 58.07.1999 г.
® "Проблемы перехода к 12-летней системе обучения", Научно-практическая конференция молодых ученых, Москва ИОСО РАО, 4 апреля 2000 г.
в Международный Конгресс - 2000 "Фундаментальные проблемы естествознания и техники", г. Санкт-Петербург, 3-8. 07. 2000 г.
* Международный симпозиум "Перестройка Естествознания", Москва,20-22.04.2001г.
« Фестиваль НТТМ (научно-технического творчества молодежи), Москва, ВВЦ, 24-27.05.2001 г.
• Российский образовательный форум "Школа - 2004", Москва, Выставочный центр «Сокольники», 21-24.04.2004 г.
Структура диссертации. Диссертация состоит из введения, трёх глав, заключения, списка литературы, иллюстраций и четырёх приложений.
Основное содержание диссертационного исследования
Во введении показана актуальность проблемы, определены цель, объект и предмет, сформулированы гипотеза и задачи исследования, дано методологическое обоснование работы, раскрыты научная новизна, теоретическая и практическая значимость исследования.
В главе 1 «Анализ содержания курса химии 8-11 класса по вопросам строения вещества и его обеспечения средствами наглядного моделирования» выявлены современные тенденции моделирования в школьном курсе химии, сделан вывод о необходимости использования различных учебных моделей. В исследовании проведён анализ значения и частоты использования моделей в процессе обучения и сделан вывод, что модели используются практически непрерывно на протяжении всего курса химии и могут подразделяться в зависимости от классификационного признака на пять групп. По способу замены оригинала модели подразделяют на материальные и идеальные, которые в свою очередь, разделяются согласно доминантным свойствам на группы (виды), показанные на схеме 1.
В соответствии с дидактическим принципом наглядности, в обоснование которого внесли существенный вклад A.A. Грабецкий, В.В. Давыдов, JI.C. Зазнобина, Л.В. Занков, Я.А. Коменский, Т.С. Назарова, И.Г. Песталоцци, B.C. Полосин, К.Д. Ушинский, И.Н. Чертков, С.Г. Шаповаленко, представление об изучаемом предмете или явлении должно формироваться на основе синтеза ощущений. Для обучения в школе важна чувственная воспринимаемость того объекта, который выступает в качестве модели. Анализ содержания курса химии в средней школе показывает, что большой объем знаний, адресованный учащимся, связан со структурой вещества, электронным строением атома. Выявлена необходимость демонстраций моделей устойчивых электронных оболочек атомов химических элементов, механизма образования химических связей и особенно взаимодействия атомов в процессе образования общей молекулярной оболочки. С дидактической точки зрения, представляется необходимым, чтобы каждое явление (захват электрона ионом или образование связей) сопровождалось наглядным образом, а не только символическим обозначением смещения
электронной плотности. Для полноценного усвоения знаний необходимо использовать модели, отражающие электронное строение вещества на современном научном уровне. Однако большинство учебных моделей, используемых в школе при изучении строения вещества и химической связи, обладают недостаточной информационной ёмкостью. Учащиеся не получают в должном объёме сведений о взаимодействии электронов в атомных оболочках и взаимодействии электронных оболочек атомов при образовании химических связей.
Схема 1
Классификация моделей
Г Материальные . По виду Идеальные
И ... Л л л
Объемные: Плоские: Мысленные: Символи-
•Скелетные: •Апплика- • Резерфорда - ческие:
• Шаро- ции: Бора; • Электрон-
стержневые; • Фишечные; • Электрон- ных пар
•Масштабные •Магнит- ных пар (стрелки);
Стюарта - ные; Гилеспи; • Структур-
Бриглеба; • Фланеле- • Квантово- ные схемы;
«Орбитальные граф механичес- •Графические
разборные. (липучки). кая. схемы.
Структурные
Статические
По характеру взаимодействия сторон оригинала
По типу представления информации
Функциональные
Динамические
Демонстрационные
По способу применения
Пассивные
По степени коммуникативности
Раздаточные
Интерактивные
В традиционных, но «информационно устаревших» моделях, не заложена возможность демонстрации процесса образования форм молекул,
определяемого электронным строением атомных оболочек. С другой стороны, сложность изложения основ квантовой химии не позволяет в восьмом и девятом классах дать необходимые объяснения причин и закономерностей размещения электронов вокруг ядер атомов. В школьном курсе не рассматривается возможность самостоятельного определения числа электронов на энергетическом слое, что затрудняет: ' формирование качественных представлений об электронном строении атомов,, молекул, кристаллических тел. Важнейший вопрос устойчивости электронных оболочек, формирующих вид Периодической системы химических элементов Д. И. Менделеева, освещается недостаточно, декларативно, без опытной проверки и закрепления в эксперименте. Рассмотрение этого вопроса фактически замалчивается из-за отсутствия моделей, позволяющих объяснить их свойства и особенности строения доступно, без избыточной сложности, присущей орбитальным моделям.
В исследовании показано, что при использовании традиционных видов моделей (скелетные, шаро-стержневые, масштабные) и моделей с резко возрастающей сложностью использования - орбитальных, у учащихся образуется определённый разрыв в знании о строении атома. Такая идейная несовместимость моделей молекулярных орбиталей с более простыми традиционными моделями приводит к необходимости углублённого изучения, что не предусмотрено в некоторых курсах и в классах гуманитарного профиля. Образуется дистанция между принятым базовым уровнем обучения классов общеобразовательной школы и существующей необходимостью изучения химии в свете современных научных представлений о строении атома.
Очевидно, что недостатки в содержании обучения являются следствием либо чрезмерной сложности средств обучения, порождающей ограниченность изобразительных средств, либо недостаточными изобразительными качествами моделей, не соответствующими современному научному знанию. Возникает проблема приведения содержания в. соответствие с принципами не только историчности и фундаментальности, но и преемственности, научности, адаптивности и технологичности. С другой стороны, сложность и разрозненность знания, а местами и его противоречивость в части, посвященной устройству атома, является отражением исторического пути развития научных знаний. С этой особенностью развития научно-технических знаний также важно ознакомить учащихся для достижения полноценного формирования их мировоззренческой позиции.
Попытки совершенствования учебных моделей имеют место в методике преподавания химии. Они касаются отражения формы электронных оболочек (А.И Шпак), демонстрации направленности и объёма электронных оболочек (B.C. Полосин), построения геометрических моделей, отражающих общую структуру молекул (С.Н. Дроздов), представления форм электронных облаков при посредстве вращения различных деталей (Ю.И. Булавин), рассмотрения взаимодействия пар, образованных электронами с противоположными знаками сйин - модели Р. Гиллеспи (С.С. Бердоносов).
По итогам анализа сделан вывод, что для полноценного усвоения учащимися разнообразной информации, связанной со строением атома, недостаточно использования традиционных моделей. Учебные модели нуждаются в пересмотре с целью улучшения дидактических качеств. Следует дополнить список учебных моделей такими, которые позволят связать воедино исторические модели атома, отражающие собой развитие знаний об атоме (Демокрита, Томсона, Резерфорда), модели, ставшие уже традиционными при изучении химии (скелетные, шаро-стержневые, масштабные Стюарта - Бриглеба) и модели, используемые в вычислительных методах (метод молекулярных орбиталей).
В исследовании показана потребность создания иерархической системы моделей, позволяющей формировать взаимосвязанные комплексы моделей для изучения строения вещества, иллюстрирующие при необходимости определенные свойства моделируемого объекта и укрепляющей междисциплинарные связи.
В главе 2 «Педагог ико-эргономические требования к созданию и использованию моделей для изучения строения вещества» изложены исторически сложившиеся и вновь определенные требования к моделям. На основе системного подхода к использованию моделей и анализа содержания курса химии и методического наследия в данной области (A.A. Грабецкий, JI.C. Гузей, A.C. Дробоцкий, Р.Г. Иванова, J1.A. Цветков, Т.С. Назарова, П.И. Пидкасистый, B.C. Полосин, Р.П. Суровцева, С.Г. Шаповаленко, А.И. Шпак и др.) выявлена необходимость улучшения дидактических качеств наглядных моделей, связанная с развитием науки и продолжающимся формированием средств обучения. Разработка моделей требует не только отбора информации, но и учёта способов и форм деятельности учащихся и педагога, влияющих на включение отдельных видов моделей в комплекс. Последовательность формирования комплекса моделей показана на схеме 2.
Проектирование моделей опирается на систему сформированных требований. В исследовании обосновано, что одновременно с принципом научности, принцип доступности требует, чтобы обучение строилось на уровне возможностей учеников.
Большое значение в использовании обучающих моделей играет возможность их адаптации к уровню знаний обучаемого. В этой связи в диссертации сформированы основные требования, предъявляемые к созданию и использованию средств модельной наглядности. Простота восприятия, напрямую связанная с популяризацией и упрощением учебного материала, не должна наносить ущерб научной достоверности, то есть адаптивность модели не должна входить в противоречие с её информативностью. Технологичность процесса обучения обеспечивает и нстру мента л ыюсть: простота и удобство использования моделей, их однозначная адресованность выбранным изучаемым явлениям или процессам. Комплсментарность, или свойство дополнять недостающие признаки и "работать" в системе с другими средствами обучения, связана с требованием совместимости различных моделей: их взаимной непротиворечивости и возможности пересечения границ применения. В современных условиях
развития средств обучения, основанных на компьютерных технологиях, важным качеством моделей является интерактивность, возможность представления динамических видео-образов и взаимодействия с ними с помощью компьютерных графических программ, компьютерной анимации и слайдов.
Схема 2
Формирование комплекса моделей
Системное использование моделей в комплексе с другими средствами обучения обогащает процесс познания и определяет потребность иерархического распределения моделей в соответствии с определенными приёмами работы и формами деятельности, то есть с учётом специализации моделей, их возможности ярко и однозначно отражать моделируемые качества при сохранении преемственности и взаимной совместимости. В исследовании показано, что при проектировании моделей необходимо учитывать как общие педагогико-эргономические требования (схема 3), обусловленные дидактическими возможностями и функциями этого вида средств обучения, так и специфические требования, продиктованные особенностями содержания учебного предмета и отбором наиболее предпочтительных наглядных форм.
Схема 3
Педагогико-эргономические требования к проектированию моделей
Особенностью наглядных моделей объектов микромира является их повышенная тенденция к приобретению новых свойств. Это связано с тем, что способы отображения объектов микромира (атомов и молекул) продолжают совершенствоваться, что требует повышенной взаимосовместимости, предоставляющей возможность создания развивающихся, сменяющих друг друга образов, которые сопровождают процесс познания от простого к сложному. Это качество можно сформулировать как перспективность, возможность дальнейшего развития моделей, а также их гибкой адаптации к новым научным данным и изменяющимся способам использования моделей.
В исследовании кратко рассмотрено как развивались научные модели, аккумулирующие в себе новое содержание. Представлен анализ создания и развития как широко известных научных моделей (Н. Бор, В. Гейзенберг, J1. де Бройль, Г. А. Лоренц, Э. Шредингер), так и новых представлений о строении вещества второй половины 20 века (D. Bergman, J. Lucas, К. Snelson,
В.А. Ацкжовский, В.О. Беклямишев, В.А. Бунин, А.Д. Власов, Ю.К. Дидык, Ф.М. Канарев, B.C. Леонов, A.A. Логунов, В.Н. Осидак, Б.И. Ромазанов, Л.Г. Сапогин, Л.П. Фоминский). Выявлены общие свойства разных моделей, призванных уточнить представления об электронном строении вещества, показать особенности движения (расположения) электрона в атоме без излучения электромагнитных волн.
В отличие от научных моделей, появляющихся эвристическим или интуитивным путём, учебные модели возникают на базе педагогико-эргономических требований. Требование информирования учащихся в соответствии с современным уровнем знаний приводит к необходимости отражения в моделях атомов и молекул их составного характера и подробного описания электронной структуры вещества, отвечающей за все химические превращения. Помимо научности и информативности, модели должны быть приспособлены к процессу обучения, то есть знание должно быть популяризировано. Высокая степень информационной насыщенности и простое отражение свойств электрона достигается с помощью модели элементарной частицы в виде кольца или тора (D. Bergman, J. Lucas, К. Snelson, В.А. Ацюковский, А.Д. Власов, Ю.К. Дидык, Ф.М. Канарев).
В исследовании обосновано, что использование новых моделей привносит с собой новые формы и средства обучения, использование которых позволяет откорректировать содержание, вернуть в программу обучения вопросы, которые ранее были сложны для изучения, но являлись необходимыми для формирования информационного горизонта и мировоззрения. До сих пор в программе обучения химии остается не освещаемый в должной мере круг вопросов, а именно: конфигурация, состав и свойства электронных оболочек атома, которые определяют химические свойства элементов и их соединений, характер взаимодействия и динамику образования связей. Используются чрезмерно упрощённые модели не отражающие строения электронных оболочек или модели академического уровня сложности (метод молекулярных орбиталей, рассматривающий относительное смещение электронной плотности), которые сложны для обучения даже в упрощенном варианте. Нет связи между моделью электрона в виде точки, двигающейся в атоме, и орбитальной моделью, оперирующей такими понятиями, как «электронное облако», «смещение электронной плотности». Взаимная противоречивость моделей в базовом обучении приводит к парадоксальности знания, к потенциальному расколу мировоззрения, к делению на реальные и нереальные модели, находящиеся в антагонизме, что влечёт за собой неправомерное редуцирование знания, а не его полноценное усвоение.
Для преодоления указанной проблемы в диссертации предложен способ моделирования электронной структуры атомов, молекул и кристаллических тел с помощью модели электрона в виде гибкого тонкого кольца. Рассмотрены примеры построения кольцегранных моделей, отражающих электронное строение атомов и химических соединений с различными типами связей. Установлено соответствие новых кольцегранных моделей
Примеры кольцеграньых моделей атомов и молекул
Раздаточный набор "Кольцегранник" для изготовления кольцегранных моделей на уроках химии. Набор входит в комплект моделей согласно перечню учебного оборудования для общеобразовательных заведений России;
ф © // \\
Б-электроны первой и второй оболочки. Одна оболочка из восьми электронов. Модель атома неона из двух оболочек.
^^■■■МЦьи.. гФ^Щ- ' ©
Модель метилового радикала (-СН3). Гидроксильная группа (-ОН). Модель молекулы метанола (СНзОН).
@ ®
Оболочка из шести электронов - колец. Молекула кислорода (02) - двойная связь. Оболочка из восьми волновых колец- электронов.
Для изготовления моделей из волновых колец используется набор «Волновая геометрия» серии (Криволинейный Контурный Конструктор).
различных органических и неорганических веществ современным педагогико-эргономическим требованиям.
В исследовании обосновано на примерах, что упрощенная геометрическая модель электрона в виде гибкого тора является доступной и работоспособной. Модель может использоваться во всех основных операциях, характерных для модельного эксперимента: построение модели, экспериментальное её исследование и переход от модели к натуральному объекту, «состоящий в перенесении результатов, полученных в исследовании, на этот объект» (Штофф В. А.). Показано, что данная модель снимает антагонизм корпускулярно-волнового дуализма: кольцо символизирует волновой процесс циркуляции распределенного заряда по замкнутому контуру, что демонстрирует волновую природу частицы, а корпускулярные свойства объясняются ограниченностью процесса в пространстве.
Сформирован комплекс учебных моделей, удовлетворяющий всем педагогико-эргономическим требованиям. Показано, как учебные модели элементарных частиц, составляющих атом, сочетают в себе такие качества, как стабильность и узнаваемость форм элементарных частиц (электронов), возможность объяснения с их помощью переменного вида электронных орбиталей, возникающих при образовании различных видов химических связей.
В диссертации показано, что комплекс моделей, включающий новые кольцегранные модели, обладает таким набором дидактических свойств, который может привести к изменениям в содержании химического образования:
« удобство восприятия учебного материала при замене текста на образ; « сжатие объёма информации без ущемления научной достоверности;
расширение круга изучаемых тем за счёт упрощения подачи учебного
• материала;
« повышение долговременности сохранения знаний за счёт системного и • взаимосвязанного изложения, а также интерактивности моделей и внедрения новой формы обучения - модельного эксперимента;
• углубление содержания обучения без затраты дополнительного времени за счёт использования моделей электрона с расширенными дидактическими свойствами: спиральных (в виде контура с окружающими его магнитными силовыми линиями, представленного кольцом с обвивающей его спиралью); волновых (в виде цветных фрагментов колец для изображения «волн электронной плотности» при демонстрации процесса потери электронами в оболочках своей индивидуальности и взаимообъединения); стоячих волн (в виде содержащегося в кольце целого числа стоячих волн
^ по Л. де Бройлю). -
Новые дидактические возможности кольцегранных моделей проявляются также и в том, что материал, предназначенный для обучения в классах с углубленным изучением химии, может быть рассмотрен и в базовом курсе, а материал, изучаемый в 10-х и 11-х классах, может быть рассмотрен на более ранних этапах обучения. Усложненный и комбинированный варианты кольцевой модели электрона (тор, обвитый спиралью или волновые
кольцевые модели) можно использовать не только в школах с углубленным изучением дисциплин естественнонаучного цикла, но в общеобразовательных школах.
В процессе исследования определен компонентный состав моделей по химии для изучения строения веществ. Сформулированы исходные требования и разработан демонстрационно-раздаточный "Набор для сборки кольцегранных моделей атомов и молекул". Спроектированный "Набор для сборки кольцегранных моделей атомов и молекул" приспособлен для проведения любой из необходимых самостоятельных лабораторных и практических работ.
В главе 3 «Организация использования комплекса моделей при изучении строения вещества в курсе химии средней школы» рассмотрены методические возможности использования комплекса с включением кольцегранных моделей при изучении строения веществ в курсе химии средней школы.
Схема 4
Возможности комплекса с включением кольцегранных моделей при формировании понятия устойчивости электронных оболочек
Введение и повторение: информация о наличии в атоме частиц, имеющих разные заряды, массы и размеры: модели Томсона и Резерфорда-Бора. Межпредметные связи с физикой.
Присущие электрону свойства: отрицательный заряд и «спин»: «+» и «-».
Разделение электронов в атоме по оболочкам: электронные схемы.
Разные модели электрона: шарик, точка, кольцо, орбиталь.
Взаимодействие электронов в оболочке: орбитальные модели, модели Гиллеспи.
Устойчивость электронных оболочек, определяющих вид Периодической системы химических элементов Д.И
Менделеева. ^--'
Проверка устойчивости оболочек проведением
модельного эксперимента. ----
Демонстрация объединения электронов в атомные оболочки с помощью кольцегранных моделей. Этапы и приёмы.
В исследовании показано, что проблема неполноценности содержания обучения, порожденная малой информационной ёмкостью, сложностью и избыточной противоречивостью традиционно используемых моделей, может быть решена фрагментарным изменением содержания, связанным с введением в обучение новых моделей. В работе изложены изменения содержания, способы и средства достижения результата, ожидаемые результаты.
Кольцегранные модели могут быть использованы как демонстрационные, используемые учителем при объяснении электронного строения атома. С целью лучшего усвоения учебного материала предусмотрено проведение фронтальных работ по моделированию электронных оболочек атомов в виде кольцегранников (схема 4).
Новые кольцегранные модели используются в составе комплекса моделей атомов и молекул, включающего различные виды традиционных и новых моделей (схема 5).
Схема 5
Состав комплекса моделей атомов и молекул для изучения строения вещества в курсе химии средней школы
Наборы средств модельной наглядности
Набор моделей атомов со' стержнями для составления моделей молекул Набор для составления объёмных моделей молекул по Стюарту-Бриглебу Набор для моделирования строения атомов и молекул «Кольцегранник» Набор орбитальных моделей
Пособия на печатной основе Экранные средства
Таблицы Схемы, плоские аппликации Видеозаписи Компьютерные программы
На схеме 5 показаны варианты комплекса разной глубины изучения раздела «Строение вещества»: сокращённый вариант (I) для гуманитарных специальностей; для изучения химии в средней школе (2); для углубленного изучения (3), а также специальные наборы, на основе которых формируются поурочные комплексы моделей.
В диссертационном исследовании рассмотрены методические приёмы использования комплекса моделей с включением кольцегранных моделей для демонстрации и проведения практических работ по неорганической и органической химии, касающихся строения веществ; представлены фрагменты методики уроков с использованием комплекса моделей; проведено примерное тематическое планирование содержания материалов программы раздела «Строение вещества. Химическая связь».
Проведена экспериментальная проверка педагогической эффективности комплекса моделей атомов и молекул для изучения строения вещества в курсе химии средней школы, апробированы отдельные компоненты комплекса с целью выявления наиболее рационального состава комплекса и его включения в систему школьного образования для достижения более высокого качества знания учащихся.
Педагогический эксперимент включал три этапа: диагностирующий, исследовательский и констатирующий.
Диагностирующий этап эксперимента преследовал цель выявить готовность учителей к использованию новых кольцегранных видов моделей и целесообразность введения их в комплекс моделей атомов и молекул для изучения строения вещества в курсе химии средней школы. Были выявлены проблемы, возникающие у учителей в процессе преподавания учебного материала по теме «Строение вещества», связанные с недостаточной информационной ёмкостью используемых в практике преподавания моделей и их взаимной несовместимостью. При обсуждении этих недостатков с учителями химии было выяснено, что проблема качественного усвоения знания о строении вещества учащимися может решаться:
1) за счёт введения углублённо-профильного изучения учебного материала;
2) путём модернизации содержания образования и сокращения объёма материала в результате введения специального дидактического инструментария в виде комплекса с включением новых кольцегранных моделей;
3) введением модельного эксперимента и демонстраций моделей учителем.
Таким образом, обоснована целесообразность введения новых упрощенных видов моделей в комплекс моделей атомов и молекул для изучения строения вещества в средней школе и выявлена готовность учителей к их использованию.
Исследовательский этап эксперимента преследовал цель оснастить учителя и учащихся дидактическим инструментарием для организации различных видов и форм деятельности педагога и учащихся. До ознакомления учащихся с информацией важно предоставить в первую очередь информацию учителю, отличающуюся взаимосвязанным изложением различных уровней организации вещества, фрагментарно
изложенных в различных разделах учебников и методической литературы. Разработка методических приёмов и проверка возможности использования комплекса моделей с включением кольцегранных для демонстраций и проведения практических работ по неорганической и органической химии являются необходимым инструментарием для работы учителя в условиях «дефицита наглядности». ..
Констатирующий этап эксперимента нацелен на проверку педагогической эффективности влияния комплекса . или его отдельных компонентов на восприятие и усвоение учащимися материала. Применён экспертно-балльный метод определения качества средств и педагогической эффективности средств обучения, разработанный Центром средств обучения Института содержания и методов обучения РАО. Произведена оценка уровня педагогической эффективности при использовании различных компонентов комплекса моделей, включая кольцегранные.
Оценка качества обучения проводилась способом сравнения эффективности использования компонентов комплекса по каждому из показателей.
Таблица 1
Оценка доступности восприятия учащимися компонентов комплекса
Информационные Электрон- Скелет- Масштаб- Кольце- Орбиталь-
блоки (фрагменты информации) ные схемы ные модели ные модели гранные модели ные модели
1 .Модельное 4 0 4 4 1
представление электрона
и его свойств
2.Взаимодействие 4 0 0 3 2
электронов в оболочке
атома;
3. Образование электронных оболочек; 0 0 0 2 2
4. Проверка 0 0 0 3 0
устойчивости электронных оболочек;
5. Распределение 4 0 0 2 2
электронов в атоме по оболочкам;
6. Окйслительно- 3 1 1 4 3
восстанови тельные
свойства элементов;
7. Степень окисления и 3 2 2 3 2
валентность;
8. Изучение разных 0 4 4 3 2
видов коваггентных
связей;
9. Направленность 0 4 4 2 3
связей в молекулах.
Средний балл 2 1.2 1.7 2.9 1.9
Согласно мнению педагогов - экспертов выделены четыре основных показателя: информативность (соответствие содержанию изучаемого вопроса); доступность (лёгкость восприятия и способы подачи информации); затраты времени (на изложение и усвоение материала учащимися); освоение комплекса (подготовленность учителя к использованию). При оценке использовалась четырёхуровневая система оценки, показывающая степень приспособленности комплекса и отдельных его компонентов к дидактическим потребностям педагога и учащихся. Для сравнительной оценки качества обучения (педагогической эффективности) выбраны фрагменты информации (информационные блоки), предназначенной для изучения и усвоения учащимися. В качестве примера приведена одна из таблиц сравнительной оценки компонентов комплекса моделей (таблица 1). Общая оценка влияния компонентов комплекса на качество обучения (педагогическую эффективность) выведена с помощью общего оценочного профиля (таблица 2) по отдельным показателям и в целом для каждого компонента комплекса.
Таблица 2
Оценочный профиль педагогической эффективности компонентов комплекса по основным показателям
Показатели Средняя оценка в баллах
качества Электрон- Скелет- Масштаб- Кольце- Орбиталь-
ные схемы ные ные гранные ные
модели модели модели модели
Информативность 1.7 0.8 1.2 4 2
Доступность 2 1.2 1.7 2.9 1.9
Затраты времени 1.2 0.8 1.6 2.9 1.6
Освоенность 1.9 1.2 1.4 1 2.6
Средний общий балл 1.7 1 1.5 ' 2.7 2
Как видно из таблицы, по избранным педагогами показателям кольцегранные модели попадают в область положительного влияния по всем показателям, кроме освоенности, что закономерно, поскольку модели только начинают использоваться в педагогической практике.
Электронные схемы, скелетные и масштабные модели не попадают в область положительных значений по причине узкой направленности их использования. С их помощью не удаётся проиллюстрировать весь материал, предназначенный для изучения, поэтому оценки некоторых показателей (информационных блоков), по которым проводился анализ, отсутствуют, то есть, оценены как «О». Узкая направленность использования этих моделей сильно занижает их средний балл, и тем самым указывает на необходимость использования комплекса, с помощью которого достигается интегративность.
Компоненты, составляющие комплекс, дополняют друг друга и не всегда используются одновременно при изучении определённых аспектов знания (фрагментов информации). Наиболее эффективное восприятие информации достигается использованием в каждом конкретном случае (при изучении различных фрагментов информации) наиболее подходящих компонентов
комплекса, характеризующихся наивысшими показателями педагогической эффективности. Экспериментальная проверка показала, что педагогическая эффективность комплекса, характеризующая его интегративные свойства, такова, что ни одна из моделей не способна конкурировать с комплексом. Применение комплекса по всем показателям имеет положительные значения. Меньшие значения показателя освоенности указывают на необходимость наличия, освоения и более широкого использования демонстрационных и раздаточных моделей в курсе химии средней школы.
Опрос учащихся с целью выяснения целостности и сформированности знания проводился на базе двух школ (№1679 и № 1100) в 9-х и 10-х классах. Пилотный опрос показал, что использование фрагментов комплекса, включающего кольцегранные модели, приводит к высокому уровню понимания материала учащимися и лёгкости его использования при ответе на вопросы проблемного характера, а также возможности использования полученного знания с прогностическими целями. Кроме того, проводилась проверка долгосрочного сохранения знания, подтвердившая прочность и осознанность применения знаний.
Заключение
Выполненное исследование имеет теоретико-практический характер и направлено на решение проблемы создания научно обоснованной системы учебных моделей и способов её эффективного использования в школе.
1. Проведен анализ содержания курса химии 8-11 классов и определены тенденции создания и использования учебных моделей атомов и молекул для курса химии средней школы. Показана роль моделей как инструмента деятельности учителя и ученика при изучении раздела «Строение вещества». На основе анализа фонда демонстрационных средств обучения и учебного оборудования для самостоятельных работ выявлена необходимость создания моделей нового поколения, позволяющих избежать фрагментарности и отрывочности усвоения информации, обеспечив связность и системность знания, моделей, создающих ясный образ распределения электронов в каждом атоме или молекуле по электронным оболочкам.
2. Сформулированы теоретические положения создания и применения системы учебных моделей для обучения химии, представленные в виде педагогико-эргономических требований к моделям. Разработан комплекс учебных моделей, включающий новые кольцегранные модели, дополняющие традиционно используемые в курсе химии средней школы. Определен компонентный состав моделей для изучения курса химии по разделу «Строение вещества. Химическая связь». С целью адаптации научных знаний предложены разные виды кольцегранных моделей, используемые как инструмент деятельности учащихся, без которого затруднено восприятие, учебного материала и усвоение его научного содержания.
3. Разработана методика использования комплекса наглядных моделей (с включением кольцегранных) в школьном курсе химии средней школы, предусмотрена возможность проведения с их помощью модельных
экспериментов в форме демонстраций, лабораторных и практических работ. Для удобства и простоты использования комплекса моделей с встроенными компонентами новых средств и технологий, предусмотрено первичное ознакомление учащихся с помощью видео-демонстрации и проведения компьютерных уроков. Разработаны дидактические видеоматериалы и компьютерные программы для обучения с использованием новых кольцегранных моделей не только для демонстраций, но и для проведения процессов моделирования учащимися в разных организационных формах занятий (индивидуальных и групповых), что позволяет перевести обучение на новый уровень восприятия информации - образно-наглядно-действенный. Проведённая экспериментальная проверка педагогической эффективности использования комплекса моделей атомов и молекул в школьной практике подтвердила гипотезу данного исследования.
Результаты исследования и материалы внедрения отражены в
следующих публикациях:
1. Кожевников Д.Н. Кольцегранные модели молекул // Журнал физической химии. - М.: изд-во Наука, 1996. - Т.70. - №6. - С. 1134-1137.
2. Кожевников Д.Н. Патент № 2073549 на изобретение "Устройство для образования объемных тел", в соавторстве с Никитиным Е.С. от 20.02.97.
3. Кожевников Д.Н. Патент № 2098161 на изобретение "Устройство для образования объемных тел", от 10.12.97.
4. Кожевников Д.Н. Тезисы к докладу "Построение моделей электронных поверхностей кристаллических структур с помощью геометрической модели электрона в виде гибкого, тонкого тора" // Материалы международной конференции по росту и физике кристаллов, посвященной памяти М. Г1. Шаскольской. - М., 17-19.11.1998. - С. 275.
5. Кожевников Д.Н. Применение кольцегранных моделей электронных оболочек атомов и молекул для изучения строения вещества в курсах физики и химии средней школы // Сборник материалов научно-практической конференции молодых ученых "Педагогические технологии в средней общеобразовательной школе: проблемы и перспективы". -Москва ИОСО РАО, 27.04.1999. - С. 26-31.
6. Кожевников Д.Н. Применение кольцегранных моделей электронных оболочек атомов и молекул для изучения строения вещества в курсах химии и физики средней школы // Образовательная индустрия. Приложение к журналу "Наука и школа". - М.: Школа Будущего, 1999. -№4.-С. 1-6.
7. Кожевников Д.Н. Методика использования кольцегранных моделей атомов и молекул для изучения строения вещества в средней школе/У Образовательная индустрия. Приложение к журналу "Наука и школа". -М.: Школа Будущего, 1999. - №4. - С. 6-20.
8. Кожевников Д.Н. Иерархия кольцевых моделей электрона и ее использование для моделирования форм и свойств электронных оболочек атома// Материалы Международного семинара "HYPOTHESIS Ш"
(Hydrogen Power, theoretical and Engineering Solutious, International Symposium) - СПб: издано на CD, 5-8.07.1999.
9. Кожевников Д.Н. Моделирование форм электронных оболочек атомов и молекул химических соединений с помощью упрощенной модели электрона в виде замкнутого контура с током // Сборник научных статей. (Материалы Международного Научного Конгресса 22-27 июня 1998г.) -СПб.: Изд-во Политехника, 1999. - С. 40-47. ,
10. Кожевников Д.Н. Кольцёгранные модели электронных оболочек атомов и молекул // Химия в школе» - М.: Изд-во ЩколагПресс, 2000. - № 1. - С. 173. ■ - ■ ■
11. Кожевников Д.Н. Создание и использование объемных моделей атомов и молекул для изучения строения вещества в курсе химии средней школы // Сборник материалов научно-практической конференции молодых ученых «Проблемы перехода к 12-летней системе обучения». - Москва ИОСО РАО 4 апреля 2000. - С. 78-87.
12.Кожевников Д.Н. Наглядное моделирование электронных оболочек атомов и молекул с помощью геометрической модели электрона в виде гибкого тонкого тора // Материалы Конгресса - 2000 «Фундаментальные проблемы естествознания и техники». - СПб: издано на CD, 3-8.07.2000.
Средства обучения
1. Кожевников Д.Н., Рубленко В.А. Компьютерная графическая обучающая программа «Глобус атома», части 1, 2.
2. Кожевников Д.Н. Демонстрационный набор для моделирования форм атомов и молекул «Магеом» (производство ЗАО «Эконика-техно»),
3. Кожевников Д.Н. Раздаточный набор «Кольцегранник» для изготовления кольцегранных моделей атомов и молекул; методические рекомендации по его использованию (производство ЗАО «Эконика-техно»).
г M Ц ] (э
РНБ Русский фонд
2005-4 2317
Содержание диссертации автор научной статьи: кандидата педагогических наук, Кожевников, Дмитрий Николаевич, 2004 год
Введение 4
Глава 1. Анализ содержания курса химии 8-11 класса по вопросам строения вещества и его обеспечения средствами 14-54 наглядного моделирования.
1.1. Задачи и особенности изучения строения вещества в школьном курсе химии. 14
1.2. Моделирование как метод научного исследования и его роль при формировании целостного знания о строении вещества. 27
1.3. Традиционные модели атомов и молекул, используемые в преподавании естественнонаучных дисциплин. 45 - 54 Выводы к главе 1. 55
Глава 2. Педагогико-эргономические требования к созданию и использованию моделей для изучения строения вещества. 57
2.1. Принцип научности и адаптация новых научных данных для обучения. Современные тенденции развития моделирования. 57
2.2. Педагогико-эргономические требования к моделям атомов и молекул и их новые дидактические возможности. 75
2.3. Характеристика комплекта моделей для изучения строения веществ. 104 —
Выводы к главе 2. 110
Глава 3. Организация использования комплекса моделей при изучении строения вещества в курсе химии средней школы. 112
3.1. Методические возможности использования комплекса с включением кольцегранных моделей при изучении строения веществ в курсе химии средней школы. 112
3.2. Методические приёмы использования комплекса моделей с включением колыдегранных моделей для демонстрации и проведения практических работ по неорганической и органической химии. 122
3.3 Экспериментальная проверка педагогической эффективности комплекса моделей атомов и молекул для изучения строения вещества в курсе химии средней школы. 156
Выводы к главе 3. 168
Введение диссертации по педагогике, на тему "Создание и использование комплекса моделей атомов и молекул для изучения строения вещества в курсе химии средней школы"
Актуальность исследования
В современной общеобразовательной школе осознанное понимание химических процессов требует глубокого изучения строения атомов, молекул, кристаллических структур тел и природы химической связи. Курс химии средней школы строится на основе атомно-молекулярной теории, закона Авогадро, законов постоянства состава и сохранения массы вещества, периодической системы химических элементов Д. И. Менделеева, теории строения веществ.
Формирование понятий о строении вещества относится к одной из наиболее важных задач в методике обучения химии.
Моделирование - это метод познания изучаемых качеств объекта через модели: действия с моделями, позволяющие исследовать отдельные, интересующие нас качества, стороны или свойства объекта или прототипа.
Учебные модели составляют существенный компонент учебно-методического комплекта, центральное место в котором принадлежит учебникам и учебно-методической литературе.
Модели определяются как учебные изобразительные средства, замещающие натуральные объекты и передающие их структуру, существенные свойства, связи и отношения.
Особенное значение имеет применение моделей при изучении процессов, которые невозможно наблюдать из-за большой разницы временных или пространственных масштабов. Модель оказывается единственным объектом, который является носителем информации о процессе или явлении. В такой ситуации большое значение отводится модельному эксперименту. Модельный эксперимент - это особая форма эксперимента, для которой характерно использование действующих материальных моделей в качестве специальных средств экспериментального исследования. К модельному эксперименту, в котором вместо самого объекта изучается замещающая его модель, прибегают в случаях, когда объект исследования недоступен наглядному созерцанию, как объект микромира. Поэтому проблема моделирования особенно актуальна в естественных науках. В физике и химии - это проблема моделирования микрообъектов, то есть атомов и молекул.
Наибольший объем информации человек получает с помощью зрения, поэтому в первую очередь должны быть представлены «очевидные» модели. Предпочтительнее, чтобы они были ещё и осязаемые, то есть материальные. Опыт многолетнего применения моделей в процессе обучения химии показал их большую роль в процессе обучения, эффективность воздействия с их помощью учителя на ученика. Необходимость использования наглядных моделей, продолжающееся их совершенствование и появление новых моделей обусловлены развитием химии как науки и продолжающимся развитием методики технологий обучения.
Существенным фактором, препятствующим созданию моделей, удовлетворяющих педагогико-эргономическим требованиям, является несовместимость современных научных представлений с большинством простых и наглядных образов, используемых в моделировании. Попытка адаптации научных данных к процессу обучения в школе приводит к созданию упрощённых моделей и связана с определенными погрешностями в отображении свойств. Фактически создание учебных моделей сводится к задаче оптимального выбора между моделями различной степени сложности и различной изобразительной мощности. С дидактической точки зрения, это неизбежно приводит к необходимости формирования комплекса взаимосвязанных моделей, описательные характеристики которого должны удовлетворять всем запросам наглядного моделирования.
Первая попытка систематизации учебного оборудования и ее обоснование с точки зрения специфики химической науки и дидактического принципа наглядности обучения была осуществлена А. А. Грабецким и К. Я. Парменовым в книге «Учебное оборудование по химии». Авторы делают вывод о том, что наглядные пособия должны применяться в процессе обучения продуманно, в определенной системе, что они ценны как важное дидактическое средство, помогающее достижению учебно-воспитательных задач.
Однако традиционно используемые модели не являются достаточными для формирования комплекса моделей для обучения. Выборочность моделируемых с их помощью свойств, взаимная несовместимость моделей и отсутствие между ними структурно-логических связей создает препятствия обучению и усложняет процесс усвоения информации. Следует дополнить список рекомендуемых моделей такими современными моделями, которые позволили бы связать воедино исторические модели атома, отражающие собой развитие знаний об атоме (Демокрита, Томсона, Резерфорда), модели, ставшие уже традиционными при изучении химии (шаростержневые, Стюарта -Бриглеба, или Полинга), модели, используемые в вычислительных научных методах (метод М.О.). Необходимо создание иерархичной системы моделей, в рамках которой могли бы быть построены различные модели и объяснены особенности строения атома, иллюстрируя в зависимости от необходимости определенные моделируемые стороны.
Из-за сложности изложения основ квантовой химии в учебниках для восьмых и девятых классов не даётся необходимого разъяснения причин размещения электронов вокруг ядер, не рассматривается возможность определения числа электронов на энергетическом слое. Это затрудняет формирование представлений об электронном строении атомов, молекул, кристаллических тел. А это относится к основным задачам изучения курса химии, начиная с восьмого класса общеобразовательной школы.
Проблемы моделей и моделирования остаются актуальными при изучении периодического закона и периодической системы химических элементов Д.И. Менделеева: необходимо проводить демонстрацию моделей устойчивых электронных оболочек, которые определяют вид таблицы химических элементов. При изучении химических связей также необходимы простые образы взаимодействия атомов с образованием общей молекулярной оболочки. Такое явление должно сопровождаться наглядным образом, а не только символьным обозначением.
Необходимость в наглядных моделях столь велика, что в опыте школ изготавливают множество наглядных моделей для отображения электронных формул. Для демонстрации смещения электронов от одного атома к другому используются различные подходы: магнитная доска с изображением точки (электрона); коробочки с разноцветными фишками, обозначающими электроны, и кругами, обозначающими атомы различных веществ и ионов; набор из цветных пластмассовых фигур, изображающих различные виды электронных облаков, полусфер, обозначающих атомы или ионы на магнитной основе. Вышеперечисленные и подобные им наглядные пособия эквивалентны рисованию электронных схем на доске. Отличие в том, что модели, оставаясь знаковыми, приобретают некоторые черты материальности - становятся осязаемыми и динамичными, но от этого их информационная ёмкость не повышается.
Актуальной проблемой является создание новых учебных моделей, аналогичных научным и обладающих дидактическими свойствами. Этой проблеме методисты уделяют большое внимание на всём протяжении совершенствования научных моделей. А. И. Шпак предлагал в восьмом классе в виде первой модели использовать электрон, рассматривая его расположение в пространстве, форму электронного облака [135]. С. Н. Дроздов рекомендовал для этой цели использовать модели, изготовленные из мягкой медной или алюминиевой проволоки [40].
B.C. Полосин для изложения вопроса о направленности электронных облаков в пространстве использовал модели из мячей и надувных шаров, а также разборные модели s- и р- орбиталей, выполненные из проволоки, окрашенной в различные цвета. По результатам работы со школьниками им сделан вывод, что при изучении явлений микромира нельзя ограничиваться только одним видом наглядных пособий, необходимо применять комплекс различных моделей и других средств наглядности [88].
Ю. И. Булавин предлагал использовать механические и электрические устройства для приведения во вращение деталей, воспроизводящих различные формы электронных облаков [12].
C. С. Бердоносов, констатируя, что подход к объяснению строения даже простейших молекул (СНЦ, NH3, НгО и др.), который традиционно используют в средней школе, мало нагляден и весьма сложен, основан на целом ряде искусственных допущений, аргументированно предлагает использовать модели Р. Гиллеспи, которые весьма просты и позволяют объяснять строение не только молекул с простыми связями, но и веществ значительно более сложного состава, образующих двойные и тройные связи [8, с. 16].
Обучающие модели, как и исследовательские должны быть информативными, то есть их использование должно создавать образ, насыщенный информацией, необходимой и достаточной для формирования понятия о моделируемом объекте. В то же время информативная (научная) насыщенность обучающих моделей не должна конфликтовать с их приспособленностью к специфике учебного процесса. В отличие от исследовательских обучающие модели одного объекта или явления не должны входить в противоречие с мировыми закономерностями и должны быть совместимыми между собой. Под совместимостью понимается такое взаимоотношение моделей, при котором имеется возможность замены одной модели другою без ущерба для общей научной картины изучаемого явления. Использование совместимой модели, вместо рекомендованной должно приводить не к противоречиям, а либо к усложнению способа объяснения, либо, в крайнем случае, к потере моделируемой стороны объекта.
В целом появление различных моделей объясняется разным уровнем сложности моделируемых явлений и различными областями их применения. Поэтому границы применения различных моделей обязательно должны пересекаться. Обязательно должна быть область пересечения, в которой возможно применение как минимум двух моделей. В идеальном случае любая сложная модель должна быть совместимой с любой более простой моделью, отличаясь лишь диапазоном использования. Иначе процесс обучения и усвоения знаний о реальном объекте или явлении рискует перейти в область изучения особенностей самих моделей и их взаимоотношений в различных условиях. Совместимые модели, отличающиеся информационной ёмкостью, могут быть объединены в систему обучающих моделей, или образовать комплекс обучающих моделей, использование которого позволит избежать фрагментарности и отрывочности усвоения информации, обеспечив связность и системность знания.
Проблема исследования заключается в противоречии между необходимостью информирования учащихся в соответствии с уровнем современного развития науки и малой информационной ёмкостью традиционных дидактических средств - моделей атомов и молекул; между потребностью внедрения относительно новой формы обучения - модельного эксперимента и недостаточной наглядностью, а часто и взаимной несовместимостью используемых моделей.
Объектом исследования является процесс изучения строения вещества с использованием моделей атомов и молекул в курсе химии средней школы. Предмет исследования: теория и практика создания и использования комплекса моделей атомов и молекул для изучения строения вещества в курсе химии средней школы.
Цель исследования: определение путей и способов создания и использования комплекса современных моделей атомов и молекул для изучения строения веществ, их физических и химических свойств. Гипотеза исследования: если комплекс учебных моделей атомов и молекул, созданный с учетом современных тенденций моделирования на основе традиционных и новых моделей, будет отвечать требованиям высокой информационной ёмкости, обладать широкими дидактическим возможностями и использоваться для внедрения новой формы обучения - модельного эксперимента, то это будет способствовать: формированию у учащихся целостного и осознанного знания о строении вещества; пониманию свойств веществ; углублению и долговременному сохранению знаний; укреплению междисциплинарных связей и созданию единой научной картины мира. Задачи исследования
1. Провести анализ содержания курса химии 8-11 классов по вопросам строения вещества и его обеспечения средствами наглядного моделирования.
2. Сформулировать педагогико-эргономические требования к моделям и сформировать единый комплекс взаимно непротиворечивых научно обоснованных учебных моделей (включающий в себя как традиционно используемые, так и новые кольцегранные модели), обеспечивающий достижение педагогических целей наиболее эффективными способами. 3. Разработать методические приёмы использования комплекса учебных моделей, включая кольцегранные, проверить возможность проведения с их помощью модельных экспериментов, оценить педагогическую эффективность его использования в школьной практике. Методологической основой исследования являются фундаментальные исследования в области дидактики, психологии, теории создания и использования различных видов средств обучения и их комплексов (А.А. Грабецкий, Л.С. Зазнобина, А.А. Макареня, Е.Е. Минченков, Т.С. Назарова, С.Г. Шаповаленко), методики обучения химии (О.С. Зайцев, Н.Е. Кузнецова, Л.А. Цветков, Г.М. Чернобельская, И.Н. Чертков), психолого-педагогические и эргономические теории (В.В. Давыдов, В.П. Зинченко, В.М. Мунипов), результаты анализа научно-технических достижений в области создания моделей элементарных частиц, атомов и их химических соединений. Методы исследования
• Анализ педагогической, методической, химической, психолого-педагогической литературы по вопросам теории познания и управления процессом усвоения знаний, проектирования и создания средств обучения по проблемам строения вещества, создания и использования моделей при изучении структуры вещества.
• Наблюдение и обобщение педагогического опыта школьных занятий, опыта передовых учителей и методистов, педагогических инноваций, а также опыта внешкольной кружковой работы учащихся.
• Экспериментальная проверка сравнительной педагогической эффективности влияния отдельных моделей и комплекса в целом на качество обучения.
Этапы исследования
На первом этапе (1996-1998 гг.) определены проблемы и трудности, с которыми сталкиваются учителя и ученики при изучении строения вещества в курсе химии средней школы, связанные со сложным строением атома и насущной необходимостью знания закономерностей его строения. Определён способ решения проблем усвоения учебного материала и создания условий повышения качества знания путём с помощью комплекса моделей, отличающегося взаимосвязанностью всех компонентов и новыми дидактическими возможностями.
На втором этапе (1999-2001 гг.) рассмотрены тенденции современного моделирования, педагогико-эргономические требования, предъявляемые к моделям, предложен комплекс учебных моделей, включающий новые кольцегранные модели, и рассмотрены дидактические возможности комплекса.
На третьем этапе (2002-2003 гг.) определены приёмы и способы использования комплекса моделей для изучения строения вещества, составлены методические рекомендации и проверена педагогическая эффективность его использования.
Научная новизна и теоретическая значимость исследования
• Разработана концепция создания и использования комплекса учебных моделей атомов и молекул для изучения строения вещества, включающая основные и специфические педагогико-эргономические требования, предъявляемые к используемым моделям с учётом современных тенденций моделирования.
• Предложена серия новых учебных моделей, представляющих собой необходимые компоненты для создания комплекса средств наглядного моделирования, отвечающих современным педагогико-эргономическим требованиям.
• Разработаны методические приёмы использования комплекса моделей, включая кольцегранные, для обучения химии в средней школе, обеспечивающие эффективность усвоения знаний учащимися.
Практическая значимость результатов исследования
• Сформирован комплекс учебных моделей атомов и молекул, включающий новые кольцегранные модели.
• Разработаны и освоены производством наборы кольцегранных моделей и созданы компьютерные графические программы для ознакомления с кольцегранниками.
• Подготовлена к внедрению в школу серия таблиц по теме «Строение вещества», разработанная на базе комплекса учебных моделей атомов и молекул с включением кольцегранных.
• Составлены методические рекомендации по использованию комплекса учебных моделей атомов и молекул в обучении.
• Проверена возможность использования новых моделей в обучении в виде компьютерно-графических программ обеспечивающих и контролирующих эффективность усвоения знаний учащимися при изучении вопросов строения вещества.
Заключение диссертации научная статья по теме "Теория и методика обучения и воспитания (по областям и уровням образования)"
Выводы к главе 3.
1. Разрыв между принятым базовым уровнем обучения классов общеобразовательной школы и существующей необходимостью изучения физики и химии в свете современных научных представлений о строении атома, идейная несовместимость моделей молекулярных орбиталей с более простыми традиционными моделями приводит к необходимости приведения содержания в соответствие с принципами не только историчности, но и научности, фундаментальности, адаптивности и технологичности. Взаимная противоречивость моделей в базовом обучении приводит к парадоксальности знания. Носителем знаний разного уровня сложности об устройстве атома и его свойствах может являться модель кольцегранных электронных оболочек. Её методическая простота и доступность позволяет использовать её в общеобразовательной школе, в том числе и в классах гуманитарного профиля, а её вариативность и возможность использования усложнённых моделей (узнаваемо кольцегранных: волногранных, или из замкнутых спиралей) позволяет её использовать и в классах углубленного изучения.
2. Кольцегранные модели могут использоваться на протяжении преподавания всего курса химии, с самого начала изучения Периодического закона. Использование наглядных моделей предусмотрено для широкого круга тем: "Периодический закон и периодическая система химических элементов Д. И. Менделеева. Строение атома. Строение веществ".
3. Проблема неполноценности содержания обучения, порожденная сложностью и избыточной противоречивостью традиционно используемых моделей, может быть решена фрагментарным изменением содержания, связанным с введением в обучение новых моделей.
4. Предложены различные методические приемы использования новых моделей в основных темах курса химии 8-11 классов: предусмотрено использование новых моделей для демонстраций; использование ознакомительных видеоматериалов и проведение компьютерных уроков; предложено проведение фронтальных работ, а также лабораторных и практических работ в виде модельных экспериментов проводимых учащимися самостоятельно или в составе коллектива.
5. Кольцегранные модели, объединяя в себе достоинства и электронных схем и орбитальных моделей, предоставляют новые дидактические возможности в виде проведения модельных экспериментов, для проведения которых разработаны образцы технологических карт для учащихся, а также таблицы по теме «Строение вещества» и методические рекомендации для учителей.
6. Рассмотрено примерное тематическое планирование материалов программы, организационные формы и методические приёмы изложены в виде таблицы.
7. Подготовленное таким образом использование новых - кольцегранных моделей позволяет перевести обучение на новый уровень восприятия информации: образно-наглядно-действенный.
Выполненное исследование имеет теоретико-практический характер и направлено на решение проблемы создания научно обоснованной системы учебных моделей и способов её эффективного использования в школе.
1. Проведен анализ содержания курса химии 8-11 классов и определены тенденции создания и использования учебных моделей атомов и молекул для курса химии средней школы. Показана роль моделей как инструмента деятельности учителя и ученика при изучении раздела «Строение вещества». На основе анализа фонда демонстрационных средств обучения и учебного оборудования для самостоятельных работ выявлена необходимость создания моделей нового поколения, позволяющих избежать фрагментарности и отрывочности усвоения информации, обеспечив связность и системность знания, моделей, создающих ясный образ распределения электронов в каждом атоме или молекуле по электронным оболочкам.
2. Сформулированы теоретические положения создания и применения системы учебных моделей для обучения химии, представленные в виде педагогико-эргономических требований к моделям. Разработан комплекс учебных моделей, включающий новые кольцегранные модели, дополняющие традиционно используемые в курсе химии средней школы. Определен компонентный состав моделей для изучения курса химии по разделу «Строение вещества. Химическая связь». С целью адаптации научных знаний предложены разные виды кольцегранных моделей, используемые как инструмент деятельности учащихся, без которого затруднено восприятие учебного материала и усвоение его научного содержания.
3. Разработана методика использования комплекса наглядных моделей (с включением кольцегранных) в школьном курсе химии средней школы, предусмотрена возможность проведения с их помощью модельных экспериментов в форме демонстраций, лабораторных и практических работ. Для удобства и простоты использования комплекса моделей с встроенными компонентами новых средств и технологий, предусмотрено первичное ознакомление учащихся с помощью видео-демонстрации и проведения компьютерных уроков. Разработаны дидактические видеоматериалы и компьютерные программы для обучения с использованием новых кольцегранных моделей не только для демонстраций, но и для проведения процессов моделирования учащимися в разных организационных формах занятий (индивидуальных и групповых), что позволяет перевести обучение на новый уровень восприятия информации - образно-наглядно-действенный. Проведённая экспериментальная проверка педагогической эффективности использования комплекса моделей атомов и молекул в школьной практике подтвердила гипотезу данного исследования.
Список литературы диссертации автор научной работы: кандидата педагогических наук, Кожевников, Дмитрий Николаевич, Москва
1. Bergman D.L. Spinning Charget Ring Model of Elementary Particles // Galilean Electrodinamics, 1991. vol. 2. - №2. - P. 30-32.
2. Bergman David.L. and Lucas J., Charles W. Physical Models for Elementary Particles, Atoms and Nuclei / Presentedat IVth International Conference: Problem of Space, Time and Motion. St. Petersburg, September 1997.
3. Lucas J. A Physical Model for Atoms and Nuclei //Galilean Electrodinamics, January/February 1996. vol.7, - №1, P. 3-12.
4. Snelson K. Portrait of an atom / Exhibition booklet. Baltimore's Maryland Science Center, 1981.
5. Аркавенко Л. H. Методические основы создания и использования системы приборов и установок для факультативного курса «Химия в промышленности»: диссертация к.п.н. (13.00.02) Москва 1991. -218с.
6. Ацюковский В. А. Общая эфиродинамика. М.: Энергоатомиздат, 1990. -70с.
7. Беклямишев В.О. Теория вакуума. Ч.1.- СПб.:000 "Конгресс", 1998. -104с.
8. Бердоносов С. С. Как объясняет строение молекул модель Р. Гиллеспи? //Химия в школе, 1996. №2. - С. 16-21.
9. Бердоносов С. С. Учебники по химии: традиционные заблуждения и современность // Химия в школе, 2000. № 5. - С. 22-27.
10. Ю.Болтянский В. Г. Формула наглядности изоморфизм плюс простота // Сов. Педагогика, 1970. - № 5.
11. Бородин П. В. Наш подход к изучению строения метана, этилена и ацетилена //Химия в школе, 1991. № 6. - С.40-41.
12. Булавин Ю. И. Динамические модели электронных облаков // Химия в школе, 1995. №4. - С. 69-70.
13. Бунин В. А. Математика и трудности физики // Сознание и физическая реальность. М.: изд. Фолиум, 1997. - т. 2. - № 2. - С. 71-79.
14. Ванюгина Т. В., Миллиареси Е. Е. Факультативный спецкурс «Пространственное и электронное строение органических соединений» // Химия в школе, 1988. № 4. - С. 43-44.
15. Верховский В. Н. И Смирнов А. Д. Техника химического экперимента. Пособие для учителей. т. 1, изд. 6-е, переработанное - М., Просвещение, 1975.-368с.
16. Верховский В. Н. И Смирнов А. Д. Техника химического экперимента. Пособие для учителей. т. 2, изд. 6-е, переработанное - М., Просвещение, 1975.-383с.
17. Виноградова Н. К. Организационно-педагогические основы проектирования предметно образной среды учебного комплекса «детский сад школа»: текст диссертации к.п.н. (13.00.02) - Москва 1999.-313с.
18. Власов А. Д. Атом Шредингера // УФН, 1993. № 2. - т. 163. - С. 97-103.
19. Власов А. Д. Классическое направление в квантовой механике. М.: МРТИ РАН, 1993.-229с.
20. Габриелян О. С., Смирнова Т. В. Изучаем химию в 8 классе: Методическое пособие к учебнику Габриеляна О. С. Химия 8 для учащихся и учителей. Дидактические материалы. / Под общ. ред. Т. В. Смирновой. - М.: Блик плюс, 1997. - 224с.
21. Галиулин Р. В. Лекции по геометрическим основам кристаллографии: Текст лекций. Челябинск: Урал. Гос. Ун-т, Челяб. гос. ун-т, 1989. - 81с.
22. Гапич Г. П. Интегрированный урок повторения и обобщения знаний // Химия в школе, 1998. № 7. - С. 26-28.
23. Гаркунов В. П. Методика преподавания химии / Под ред. Н. Е. Кузнецовой. М.: Просвещение, 1984. -415с.
24. Гейзенберг В. Физика и философия. М.: Наука, 1989. -400с.
25. Глинка Н. Л. Общая химия: Учебное пособие для вузов. 21-е изд. / Под ред. Рабиновича В. А. - Л.: Химия, 1980. - 720с.
26. Голубев И. М., Аверин А. В. Изображение а и я-связей на одном рисунке // Химия в школе, 1990. № 2. - С.39.
27. Голубев И.М. О понятии «электронное облако» // Химия в школе, 1980. -№5. С.36.
28. Грабецкий А. А., Зазнобина Л. С., Назарова Т. С. Использование средств обучения на уроках химии. М.: Просвещение, 1988. - 160с.
29. Грабецкий А.А., Назарова Т.С., Лаврова В.Н. Химический эксперимент в школе. М.: Просвещение, 1987. -240с.
30. Гузей, Л. С., Сорокин В. В., Суровцева Р. П. Строение атома и химическая связь //Химия в школе, 1988. № 2. - С. 46-51.
31. Гузей, Л. С., Сорокин В. В., Суровцева Р. П. Строение атома и химическая связь // Химия в школе, 1988. №3. - С. 42-48.
32. Гузик Н. П. Обучение органической химии: Книга для учителя: Из опыта работы. М.: Просвещение, 1988. - 224с.
33. Давыдов В. В. Виды обобщения в обучении. Логико-психологические проблемы построения учебных предметов. М.: Педагогика, 1972. -424с.
34. Давыдов В. В. Проблемы развивающего обучения: Опыт теоретических и экспериментальных психологических исследований. М.: Педагогика, 1986.-240с.
35. Давыдов В. В. Теория развивающего обучения. М.: ИНТОР, 1996. -544с.
36. Давыдов В. В., Варданян А.У. Учебная деятельность и моделирование. -Ереван: Луйс, 1981. -220с.
37. Дайнеко В. И. Лекция «Теория строения. Углеводороды: связь строения со свойствами»// Химия в школе, 1988. №1. - С.36-43.
38. Дидык Ю. К., Уразаков Э.И. Сборник проблемных лекций по физике: Учебное пособие. ВВВСКУ: Дубна, 1990. - 62с.
39. Дризовская Т.М. Методика обучения химии в 9 классе. Пособие для учителей. -М.: Просвещение, 1965.-224с.
40. Дроздов С. Н. Тетраэдрическая модель и её использование // Химия в школе, 1982. № 3. - С.52-54.
41. Дуков В.М. Два века работы над школьным учебником физики // Проблемы школьного учебника. М.: Просвящение, 1990. - вып. 19, сост. В.Р. Рокитянский. - С. 236-269.
42. Егорова А. А. О взаимосвязи курсов естествознания и химии // Химия в школе, 1995.-№ 1.-С.30-31.
43. Загорский В. В. «Вальдорфское» преподавание химии //Химия в школе,1995. -№3. С.10-13. 44. Зайцев О. С. Общая химия. Состояние веществ и химические реакции.
44. Учебное пособие для вузов. М.: Химия, 1990. - 352с. 45.Зайцев О. С. Методика обучения химии. - М.: ВЛАДОС, 1999. - 384с.: ил. 46.3анков Л.В. Избранные педагогические труды. - М.: Новая школа, 1996. -426с.
45. Зелинский А.Н. Академик Н.Д.Зелинский (Новое в жизни, науке, технике. Сер. «Химия», № 11). М.: Знание, 1981.-64с.48.3инченко В.П., Мунипов В.М. Основы эргономики. М.: изд-во МГУ, 1979.- 343с.
46. Зорина Л.Я. Системность качество знаний. - М.: Знание 1976. - 64с.
47. Иванова Р. Г. Об изучении химии в 7 и 8 классах//Химия в школе, 1981.- № 4. С.24-29.
48. Иванова Р. Г. Об основных направлениях обновления химического образования при переходе к двенадцатилетней школе//Химия в школе, 2000. № 3. - С. 2-5.
49. Канарев Ф.М. Кризис теоретической физики. Краснодар КГАУ, 1998. -200с.
50. Качалова О. И. Методические основы организации школьного практикума по общей химии (11 класс): автореферат на к.п.н. (13.00.02) Омск: ОГПУ, 1998.-20с.
51. Кидд Р., Ардини Дж., Антон А. Представление эффекта Комптона в качестве двойного доплеровского сдвига // Физика за рубежом: Преподавание. М.: Мир, 1988. - С. 68-79. Перевод статьи Kidd R., Ardini J., Anton A.-Amer. J. Phys., 1985.-v 53,-№ 7.-p.641.
52. Кийранен К. Атомно молекулярные модели // Химия в школе, 1995. - № 5. - С. 55-56.
53. Кожевников Д. Н. Кольцегранные модели молекул // Журнал физической химии, 1996. т. 70. - № 6. - С. 1134-1137.
54. Кузнецова Л. М. Наш опыт изучения темы «Химическая связь. Строение вещества в курсе химии 8 класса» //Химия в школе, 1982. № 6. - С. 3942.
55. Кузнецова Н. Е. Формирование систем понятий при обучении химии. М.: Просвещение, 1989. - 144с.
56. Леонов В. С. Теория упругой квантованной среды. Ч. 2. - Минск: изд-во "ПолиБиг", 1997.- 122с.
57. Лоренц Г. А. Теория электронов и её применение к явлениям света и теплового излучения. М.: Гостехиздат, 1953. -472с.
58. Лоренц Г.А. Старые и новые проблемы физики. М.: Наука, 1970. - 264с.
59. Ляшенков Е. И., Гатаулин А. Г. Использование схем гибридизации электронных облаков атома углерода // Химия в школе, 1982. № 5. - С. 41-42.
60. Макареня А.А. Теория и методика обучения химии. Избранные труды. -т. 2. Тюмень: ТОГИРРО, 2000. - 335с.
61. Маурина И. Я., Липина Г.Н. Некоторые приемы использования моделей на уроках//Химия в школе, 1986. № 3. - С. 51-53.
62. Медведев Ю. Н. Явление вторичной периодичности // Химия в школе, 1998. № 3. - С. 9-19.
63. Методические рекомендации о преподавании химии в 1986/87 учебном году // Химия в школе, 1986. № 3. - С. 23-27.
64. Методические рекомендации по обучению химическим дисциплинам и методике преподавания химии / Под ред. Г. М. Чернобельской. М.: МГПИ, 1987.-101с.
65. Минченков Е.Е. Концепция химического образования в школе // Химия в школе, 1993. № 4. - С. 7-11.
66. Михайлова И. Б. Чувственное отражение в современном научном познании. М.: Мысль, 1972. - 277с
67. Назарова Т. С. Теоретические основы создания и использования системы материальных средств обучения химии в средней школе. Диссертация на соискание ученой степени д.п.н. (13.00.02) Москва: НИИСМО, 1988.-42с.
68. Назарова Т.С., Полат Е. С. Средства Обучения: технология создания и использования. М.: Изд-во УРАО, 1998. - 204с.
69. Нейланд О.Я. Органическая химия: Учеб. для хим. спец. Вузов. М.: Высш. Шк., 1990. -751с.
70. Новые педагогические и информационные технологии в системе образования: Учебное пособие для студентов педагогических вузов и системы повышения квалификации педагогических кадров / Под ред. Е. С. Полат. М.: Изд. центр Академия, 1999. - 224с.
71. Нурминский И.И. Физика 11. Учебник для школ и классов с углубленным изучением физики. - М.: НТ-Центр, 1993. - 160с.
72. Нурминский И. И., Гладышева Н. К. Физика 9: Учебник для 9 класса общеобразовательных учреждений. - М.: Просвещение, 1998. -256с.
73. Обучение химии в 7 классе: Пособие для учителя./А. С. Корощенко, П. Н. Жуков, М. В. Зуева и др./ Под ред. А. С. Корощенко. М.: Просвещение, 1988.-160с.
74. Органическая химия / Под ред. Тюкавкиной Н. А. М.: Медицина, 1989. -432с.82,Осидак В.Н. Электрон: внутренняя структура//Физическая мысль России,- М.: РИА "Кречет", 1996. № 2. - С. 49-59.
75. Педагогика: Учебное пособие для студентов пед. Ин-тов / Ю. К. Бабанский, В. А. Сластенин, Н. А. Сорокин и др./ Под ред. Ю. К. Бабанского. 2-е изд., доп. и перераб. - М.: Просвещение, 1988. - 479с.
76. Перечни учебного оборудования для общеобразовательных учреждений России. Н. Новгород: Нижполиграф, 1994. - 309с.
77. Пидкасистый П. И. Самостоятельная познавательная деятельность школьников в обучении: Теоретико-экспериментальное исследование. -М.: Педагогика, 1980.-240с.
78. Пидкасистый П. И., Портнов М. Л. Искусство преподавания: Второе издание. Первая книга учителя. М.: Педагогическое общество России, 1999.-212с.
79. Плахов И. А. Использование фланелеграфа при изучении темы «Первоначальные химические понятия» // Химия в школе, 1995. № 2. -С. 46—47.
80. Полосин В. С., Ширина Л. К. Теория и практика использования динамических средств наглядности в обучении химии / Проблемы методики преподавания химии в средней школе. Под ред. М. П. Кашина и Л. А. Цветкова. М.: Педагогика, 1973. - 272с.
81. Полосин B.C. Диссертации по методике обучения химии //Химия в школе, 1980. № 1. - С. 74-77.
82. Потапов Ю. С., Фоминский Л. П. Вихревая энергетика и холодный ядерный синтез с позиций теории движения. Кишинев - Черкасы: «ОКО- Плюс», 2000, 387с.
83. Пугал Н.А. Создание и использование системы средств обучения биологии в общеобразовательной школе. Диссертация, 1994.
84. Рентгеновские микроскопы// В мире науки. М.: Мир, 1991.- № 4. - С.36-43.
85. Родина Н.А. Самостоятельная работа учащихся по физике в 7-8 классах средней школы: Дидактические материалы /Гутник У.М, Кириллов И.Г., Родина. Н.А / под ред. Н.А. Родиной. 2-е изд. - М.: Просвещение, 1994. -126с.
86. Ромазанов Б. И. Физика эфира и природа сил / Проблемы пространства, времени, тяготения: Материалы третьей Межд. конф. 22-27. 05.94. -СПб.: изд-во Политехника, 1995. С. 175-185.
87. Ромашина Т. Н., Чернобельская Г. М. Закрепление знаний по органической химии с помощью опорных схем и тренировочных упражнений // Химия в школе, 1985. № 4. - С. 39-40.
88. Эб.Рудзитис Г. Е., Фельдман Ф.Г. Химия: Неорганическая Химия. Учебник для 8 кл. сред. шк. М.: Просвещение, 1993. - 158с.
89. Рудзитис Г. Е., Фельдман Ф.Г. Химия: Неорганическая Химия. Учебник для 9 кл. сред. шк. М.: Просвещение, 1990. - 176с.
90. Рудзитис Г. Е., Фельдман Ф.Г. Химия: Органическая Химия: Основы общей химии (Обобщение и углубление знаний). Учебник для 10 кл. сред, шк. М.: Просвещение, 1991. - 160с.
91. Садовская И. Л. Методика коррекции усвоения знаний в процессе обучения биологии в педагогическом вузе: текст диссертации к.п.н. (13.00.02)-Красноярск: КГПУ, 2000. 151с.
92. Сапогин Л. Г. Наглядный микромир. Техника молодежи, 1989. - № 1. -С. 40-45.
93. Симон Р. Эксперимент в химическом познании // Эксперимент, модель, теория. Наблюдение, эксперимент, практика. Москва-Берлин: изд-во Наука, 1982.-С. 76-87.
94. Скаткин М. Н. Методология и методика педагогических исследований. В помощь начинающему исследователю. М.: Педагогика, 1986. - 152с.
95. Скаткин М. Н. Проблемы современной дидактики. 2-е изд. М.: Педагогика, 1984. - 96с.
96. Смирнова Ж. И. Изготовление шаростержневых моделей //Химия в школе, 1984. № 1. - С. 61.
97. Смирнова Т. В. Формирование научного мировоззрения учащихся при изучении химии: Пособие для учителей. М.: Просвещение, 1984.-175с.
98. Смирнова. Т. В. К методике изучения раздела «Общая Химия» //Химия в школе, 1989. № 4. - С. 35-44.
99. Сологуб А. И. Изготовление и применение магнитных моделей//Химия в школе, 1985. № 3. - С. 55-56.
100. Соломон Д. Н., Степанов Е. Ю. Дидактический материал к магнитной доске//Химия в школе, 1982. № 1. - С. 65.
101. Суровцева Р. П. Задания для самостоятельной работы по химии в 9 классе: Книга для учителя. — М.: Просвещение, 1995. 64с.
102. Суровцева Р. П., Софронов С. В. Задания для самостоятельной работы по химии в 8 классе: Книга для учителя. М.: Просвещение, 1993. - 96с.
103. Суровцева. Р. П.; Минченков Е. Е.; Габриелян О. С. Примерное тематическое планирование учебного материала по химии для 8 класса // Химия в школе, 2000. № 3. - С. 37-46.
104. Тикавый В. Ф. Особенности строения некоторых простых и сложных неорганических веществ //Химия в школе, 1991. № 6. - С. 5-12.
105. Тюменцева Е. Ю. Дифференциация помощи слушателям подготовительного отделения в процессе обучения химии: текст диссертации к.п.н. (13.00.02) Омск: ОГПУ, 1999. - 213с.
106. Усиление политехнической направленности обучения химии. Книга для учителя: из опыта работы / под рук. Кавериной А. А. М.: Просвещение, 1987.-127с.
107. Физика и Астрономия. Пробный учебник для 8 классов общеобразоват. учрежд. / Под ред. А. А. Пинского, В. Г. Разумовского. М.: Просвещение, 1995.-303с.
108. Фримантл М. Химия в действии. В 2-х ч. Ч. 1: Пер. с англ. - М.: Мир, 1991.-528с.
109. Фримантл М. Химия в действии. В 2-х ч. Ч. 2: Пер. с англ. - М.: Мир, 1991.-622с.
110. Хагер Н. Этапы формирования моделей // Эксперимент, модель, теория. Модели в структуре познания. Москва-Берлин: Наука, 1982. - С. 128-142.
111. Химия и Жизнь (Солтерская химия). Ч. 1. Понятия химии: Пер. с англ. -М.: РХТУ им. Д.И. Менделеева, 1997. 337с., ил.
112. Химия и Жизнь (Солтерская химия). Ч. 2. Химические новеллы: Пер. с англ. М.: РХТУ им. Д.И. Менделеева, 1997. -437с., ил.
113. Химия и Жизнь (Солтерская химия). Ч. 3. Практикум: Пер. с англ. М.: РХТУ им. Д.И. Менделеева, 1997. -406с., ил.
114. Химия и Жизнь (Солтерская химия). Ч. 4. Руководство для учителей: Пер. с англ. М.: РХТУ им. Д.И. Менделеева, 1998. - 331с., ил.
115. Хомченко Г. П. О графических и структурных формулах // Химия в школе, 1983. -№3.- С. 61-63.
116. Цветков J1. А. К обоснованию содержания базового химического образования // Химия в школе, 1999. № 5. - С. 17-22.
117. Цветков Л. А. Обобщение знаний учащихся по органической химии // Химия в школе, 1981. № 6. - С. 17-24.
118. Цветков Л. А. Органическая химия: Учебник для 10 класса средней школы. 25 -е изд., перераб. - М.: Просвещение, 1988. - 240с.
119. Цветков Л. А. Преподавание органической химии в средней школе: Пособие для учителя. 3-е изд., перераб. - М.: Просвещение, 1984. -256с.
120. Чернобельская Г.М. Основы методики обучения химии. М.: Просвещение, 1987.-256с.
121. Чернобельская Г.М. Методика обучения химии в средней школе. М.: ВЛАДОС, 2000. - 336с.
122. Чертков И. Н. Ещё раз о понятии «степень окисления» в органической химии //Химия в школе, 1998. -№ 7.-С. 31-32.
123. Чертков И. Н. Значение работ А. М. Бутлерова для развития методики обучения химии //Химия в школе, 1991. № 6. - С. 13-19.
124. Шамилишвили О. X. К вопросу о наглядности при изучении гибридизации электронных оболочек // Химия в школе, 1982. № 5. - С. 43.
125. Шаповаленко С.Г. Методика обучения в восьмилетней и средней школе. М.: Гос. Учебно-Пед. Изд-во мин. Просвещения РСФСР, 1963. -668с.
126. Шелинский Г.И. Каким быть школьному курсу химии // Химия в школе, 1985.-№4.-С. 45-48.
127. Шпак А.И. Комплекс пособий при изучении строения вещества в курсе химии восьмого класса общеобразовательной школы: автореферат на к.п.н. (731)-Саратов: СГПИ, 1971.-26с.
128. Шредингер Э. Избранные труды по квантовой механике. М.: Наука, 1976.
129. Штофф В. А. Проблемы методологии научного познания. Монография. -М.: Высшая школа, 1978. 269с.
130. Штофф В.А. Моделирование и философия. М.: Наука, 1966.
131. Эткинс П. Порядок и беспорядок в природе: Пер. с англ./ Предисл. Ю. Г. Рудого. М.: Мир, 1987. - 224с., ил.
132. Юзвишин И. И. Информациология. 3-е изд., испр. и доп. - М.: Радио и связь, 1996. -215с.
133. Ярославская Г. П. Набор для моделирования химических связей и структур атомов // Химия в школе, 1986. № 3. - С. 54-55.
134. Яцуто М. А. Использование дидактических возможностей химии для подготовки учащихся к жизнедеятельности: текст диссертации к.п.н. (13.00.02) Омск: ОГПУ, 1999. - 192с.