автореферат и диссертация по педагогике 13.00.02 для написания научной статьи или работы на тему: ИНДИВИДУАЛИЗАЦИЯ МАТЕМАТИЧЕСКОЙ ПОДГОТОВКИ СТУДЕНТОВ НА ОСНОВЕ ИНТЕРАКТИВНОГО УПРАВЛЕНИЯ УЧЕБНОЙ ДЕЯТЕЛЬНОСТЬЮ
- Автор научной работы
- Дьячук, Павел Петрович
- Ученая степень
- доктора педагогических наук
- Место защиты
- Красноярск
- Год защиты
- 2012
- Специальность ВАК РФ
- 13.00.02
Автореферат диссертации по теме "ИНДИВИДУАЛИЗАЦИЯ МАТЕМАТИЧЕСКОЙ ПОДГОТОВКИ СТУДЕНТОВ НА ОСНОВЕ ИНТЕРАКТИВНОГО УПРАВЛЕНИЯ УЧЕБНОЙ ДЕЯТЕЛЬНОСТЬЮ"
На провал рукописи
Дьячук Павел Петрович
ИНДИВИДУАЛИЗАЦИЯ МАТЕМАТИЧЕСКОЙ ПОДГОТОВКИ СТУДЕНТОВ НА ОСНОВЕ ИНТЕРАКТИВНОГО УПРАВЛЕНИЯ УЧЕБНОЙ ДЕЯТЕЛЬНОСТЬЮ
13.00.02 — теория и методика обучения и воспитания (математика, уровень профессионального образования)
АВТОРЕФЕРАТ
диссертации на соискание ученой степени доктора педагогических наук
- 1 МАР 2012
Красноярск 2012
005015727
Работа выполнена в ГОУ ВПО «Красноярском государственном педагогическом университете им. В.П. Астафьева»
Научный консультант: доктор педагогических наук, профессор Шкерина Людмила Васильевна
Официальные оппоненты:
Далингер Виктор Алексеевич доктор педагогических наук, профессор, Омский государственный педагогический университет, зав. кафедрой теории и методики преподавания математики
Орлов Владимир Викторович доктор педагогических наук, профессор, Российский государственный педагогический университет им. А.И.Герцена, профессор кафедры методики преподавания математики
Сафонов Константин Владимирович доктор физико-математических наук, доцент, Сибирский государственный аэрокосмический университет имени академика М.Ф. Решетнёва, зав. кафедрой прикладной математики
Ведущая организация: ГОУ ВПО «Московский городской педагогический университет»
Защита состоится «21» марта 2012 г. в 13 часов на заседании диссертационного совета ДМ 212.099.16 при Сибирском федеральном университете по адресу: 660049, г. Красноярск, ул. Перенсона, 7, ауд.2-06.
С диссертацией можно ознакомиться в библиотеке Сибирского федерального университета.
Автореферат разослан « »_2012г.
Ученый секретарь
диссертационного совета
Шершнёва Виктория Анатольевна
ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ
Актуальность исследования. В настоящее время в образовании сложилась ситуация, когда резко возросли требования общества к качеству высшего профессионального образования. Поскольку одним из факторов, определяющих результативность профессиональной деятельности выпускников вузов, является уровень математического образования специалистов, то особое значение приобретает качество математической подготовки студентов вуза.
Возросшие требования к качеству математической подготовки студентов вуза делают актуальным поиск новых путей повышения эффективности обучения математике будущих специалистов, в том числе на основе применения современных информационных технологий. В работах ряда авторов (Т.Д. Глейзер, Т.В. Капустина, С.С. Кравцов, Л.П. Мартиросян, М.И. Рагулина, И.В. Роберт, Н.И. Пак, JI.JI. Якобсон и др.) подчеркивается необходимость использования средств информационно-коммуникационных технологий (ИКТ) при обучении математике. Однако в них не уделяется должное внимание индивидуализации математической подготовки студентов в вузе на основе применения современных информационных технологий как условия повышения качества математической подготовки студентов.
Несмотря на пристальное внимание исследователей (Г.А Балл, В.А. Басова. В.П. Беспалько, В.А. Гусев, Т.И. Гурова, JI.B. Жарова,
B.А. Крутецкий, В.И. Крупич, Ю.А. Козелецкий, И.Я. Лернер, М.В. Литвинцева, Л.В Шкерина и др.) к проблеме управления учебной деятельностью студентов в вузе, направленной на мобилизацию их личностного потенциала в процессе самостоятельной учебной деятельности при решении математических задач, до сих пор не разработаны теоретические основы интерактивного управления учебной деятельностью студентов в вузе. В интерактивном управлении математической подготовкой студентов это требует учета особенностей субъект-субъектных отношений между центром управления (преподавателем) и студентом.
Индивидуализация учебно-познавательной деятельности студентов организуется, как правило, с помощью дифференцированных учебных заданий (В.В. Гузеев, В.И. Крупич, И.П. Подласый, Л.В. Шкерина и др.), в процессе выполнения которых происходит поэтапное усвоение учебной информации (П.Я. Гальперин, В.В. Давыдов, А.Н. Леонтьев,
C.Л. Рубинштейн, Н.Ф. Талызина, Д.Б. Эльконин и др.). В ряде работ (М.А. Холодная, М.Н. Берулава, O.A. Зимовина и др.) предлагается осуществлять индивидуализацию процесса обучения студентов в вузе на основе диагностики психологических характеристик обучаемых через, например, когнитивные стили деятельности. При этом очевидно, что при
3
прочих равных условиях индивидуализация обучения существенно зависит от характера изучаемого предмета, поэтому при решении проблемы индивидуализации математической подготовки студентов на основе применения средств ИКТ необходимы специальные исследования, учитывающие специфику учебной деятельности студентов, обучающихся решению математических задач.
Проблема индивидуализации процесса обучения в контексте повышения качества предметной подготовки на основе управления учебно-познавательной деятельностью рассматривалась в ряде психологических и дидактических исследований (Л.С. Выготский, П.Я. Гальперин, Н.Ф. Талызина, И.Я. Лернер, В.В. Давыдов, Е.И. Машбиц, Т.И. Шамова, Г.И. Щукина, Л.А. Растригин, К.И. Анохин, А.Г. Мордкович, Л.В. Шкерина и ДР-)-
Индивидуализация математической подготовки студентов в вузе направлена на развитие личности, способности студентов к адаптации в динамично изменяющихся проблемных средах. Этого можно достигнуть при интерактивном управлении учебной деятельностью в процессе обучения решению математических задач, учитывающем как адаптацию системы обучения к индивидуальным особенностям личности студента, так и индивидуальные особенности адаптации студента к системе обучения математике. Высокий потенциал интерактивного управления учебной деятельностью студентов в вузе при индивидуализации математической подготовки обусловлен учетом индивидуальных характеристик саморегуляции учебной деятельности студентов в процессе научения решению математических задач.
В настоящее время существует необходимость в средствах ИКТ, обеспечивающих саморегуляцию студентами учебной деятельности в процессе обучения решению математических задач. Это в значительной степени обусловлено отсутствуем концепции индивидуализации математической подготовки студентов в вузе на основе применения средств ИКТ.
Разработка и внедрение новых информационных технологий, ориентированных на развитие индивидуальности личности, создание единого образовательного и информационного пространства, нашли своё отражение в целом ряде научных исследований (Л.И. Анцыферова, С.Я. Батышев, В.И. Богословский, Г.А. Бордовский, С.М. Вишняков, В.А. Извозчиков, М.В. Кларин, В.А. Козырев, В.В. Лаптев, М.П. Лапчик, А.К. Маркова, Н.Ф. Радионова, И.Р. Роберт, Н.И. Пак, А.П. Тряпицына, Р.Р. Фокин и др.).
Тем не менее проблема развития новых форм применения средств ИКТ в области интерактивного управления процессом обучения математике является актуальной и требует своего разрешения. Решение этой проблемы
4
позволит реализовать потенциал дидактических возможностей средств ИКТ в процессе индивидуализации математической подготовки студентов в вузе.
Сложность решения проблемы интерактивного управления обусловлена отсутствием функционально-структурной модели интерактивного управления учебной деятельностью студентов в процессе решения математических задач и недостаточным учетом потенциала современных средств ИКТ.
Для интерактивного управления учебной деятельностью студентов необходимо разработать: компьютерные инструментальные средства индивидуализации математической подготовки студентов в вузе; компьютерные системы сбора индивидуальной и групповой информации об учебной деятельности студентов; средства наглядного представления математических объектов, процессов, как в виде моделей, так и в виде геометрических интерпретаций (диаграммы, графики, таблицы и пр.); средства и методы диагностики процессуальных характеристик учебной деятельности.
Индивидуальные особенности процессуальных характеристик учебной деятельности студентов в вузе, в частности обучаемость студентов решению алгоритмических и пространственных задач; базовые когнитивные функции мыслительной деятельности студентов (память, время принятия решений, направленность внимания и т. п.), могут быть диагностированы с помощью систем интерактивного управления учебной деятельностью студентов.
Однако до настоящего времени не была разработана компьютерная система интерактивного управления учебной деятельностью студентов, обеспечивающая индивидуализацию математической подготовки студентов в вузе на основе информации о процессуальных характеристиках учебной деятельности студентов.
Все сказанное позволило выявить основные противоречия между: -существующими возможностями повышения качества математической подготовки выпускников вузов на основе индивидуализации обучения математике и слабым использованием этих возможностей в реальном образовательном процессе;
-достаточной изученностью основных положений индивидуализации обучения студентов на общем психолого-педагогическом уровне и недостаточной проработанностью методических аспектов индивидуализации обучения математике студентов вуза;
- разработанностью деятельностных основ индивидуализации обучения и отсутствием соответствующей им методической модели интерактивного управления учебной деятельностью студентов, направленной на индивидуализацию математической подготовки;
- достаточным уровнем развития ИКТ как средства реализации модели интерактивного управления учебной деятельностью студентов, направленной на индивидуализацию математической подготовки, и отсутствием эффективных методик их использования.
Выделенные противоречия определили проблему исследования, состоящую в индивидуализации математической подготовки студентов на основе использования средств ИКТ как необходимого условия повышения качества математической подготовки студентов.
Цель исследования: разработать концепцию индивидуализации математической подготовки студентов на основе интерактивного управления их учебной деятельностью средствами ИКТ и методику ее реализации.
Объект исследования: математическая подготовка студентов в вузе.
Предмет исследования: индивидуализация математической подготовки студентов на основе применения средств ИКТ.
Гипотеза исследования: Если обучение студентов математике осуществлять в условиях системы интерактивного управления их учебной деятельностью, основанного на:
- реализации дидактических принципов интерактивного управления и саморегуляции учебной деятельности в процессе обучения математике;
- алгоритмах интерактивного управления учебной деятельностью студентов в процессе решения математических задач, учитывающих: 1) количественные характеристики обратной связи между обучающимся и (преподавателем) центром управления; 2) процессуальные характеристики учебной деятельности обучаемого (уровень способности к дифференцировке и распознаванию объектов; объем оперативной памяти; уровень развития направленного внимания; время принятия решения; обучаемость; трудозатраты поиска решения задачи, индуктивный порог формирования навыков; уровень развития пространственного воображения; фазовый портрет учебной деятельности обучающегося решению математических задач; траектория поиска решения задач; уровень самостоятельности учебной деятельности),
то это будет способствовать индивидуализации их математической подготовки, а именно: определять индивидуальный темп учебной деятельности; необходимый и достаточный объем учебных задач для научения; индивидуальную частоту и объем информационной поддержки процесса обучения решению математических задач, обеспечивающей повышение ее качества.
Проблема исследования, его цель, объект и предмет, а также сформулированная гипотеза обусловили постановку задач исследования.
1. Разработать основные теоретические положения концепции индивидуализации математической подготовки студентов в вузе на основе средств ИКТ.
2. Создать теоретические основы и модель системы интерактивного управления учебной деятельностью студентов в процессе решения математических задач, способствующих индивидуализации математической подготовки студентов в вузе.
3. Разработать динамические компьютерные тесты-тренажеры по математике как инструментальные средства системы интерактивного управления учебной деятельностью студентов.
4. Выявить и обосновать основные индикаторы диагностики процессуальных характеристик учебной деятельности студентов по решению математических задач, определяющие алгоритмы интерактивного управления и способствующие индивидуализации их математической подготовки.
5. Разработать методику интерактивного управления учебной деятельностью студентов, обучающихся решению математических задач, на основе диагностики ее процессуальных характеристик динамическими компьютерными тестами-тренажерами по математике.
Методологической основой исследования являются фундаментальные работы в области педагогики, психологии и теории деятельности и применения деятельностного подхода в образовании:
- деятельностный подход и теория деятельности (А.Н. Леонтьев, П.Я. Гальперин, Н.Ф. Талызина, Г.Ф. Суходольский, В.П. Зинченко, Г.П. Щедровицкий и др.);
системно-деятельноегный подход к организации учебной деятельности с учетом его синергетического аспекта (В .Г. Виненко, В.А. Игнатова, В.В. Краевский, И.Я. Лернер, Т.С. Назарова, М.Н. Скаткин, И.Я. Пригожин, С.С. Шевелева и др.); системно-функциональный анализ процесса обучения (К.А. Анохин, А. В. Турчин, Н.Ф. Талызина, В.И. Сосновский, В.И. Тесленко);
- теория моделирования и теория управления (В.А. Штофф, В.А. Веников, Л.М. Фридман, B.C. Гершунский, А.И. Уемов, И.Б.Новик, Е.В. Оспенников, Л.А. Растригин, Д.М. Ковалев, Д.А. Новиков и др.);
исследования в области педагогических технологий и педагогического проектирования (В .А. Сластенин, В.П. Беспалько, B.C. Безрукова, Г.К. Селевко, М.В. Кларин, М.М. Левина, И.О. Яковлева, Л.В. Шкерина и др.);
- теория решения задач (Г.А. Балл, Л.Л. Гурова, A.B. Эсаулов, В.М. Глушков, Л.М. Фридман, Ю.Н. Кулюткин, Н.И. Тулькибаева,
А.М. Усова и др.); теория искусственного интеллекта и агентный подход (С. Рассел, П. Норвиг, Дж. Люггер и др.);
- труды педагогов и психологов по структурированию содержания, динамизации методов и приемов обучения, взаимодействия в системе «учитель-ученик» (Ю.И. Дик, ПЛ. Гальперин, В.В. Давыдов, В. М. Монахов, B.C. Леднев, А.М. Леоньтьев, Б. Скинер и др.);
- концепции информатизации образования (А.П. Ершов, А. А. Кузнецов, О.А. Козлов, С. Пейперт, Е.С. Полат, Н.И. Пак, И.В. Роберт, В.В. Рубцов и др.).
Методы исследования
1. Теоретические методы: анализ философской, методологической, педагогической, научно-технической и методической литературы по проблеме исследования; методы системного анализа и системной динамики, теории управления сложными объектами и организационными системами, систем искусственного интеллекта; общенаучные методы исследования -обобщение, классификация, систематизация, сравнение, моделирование, структурный и функциональный анализ, анализ и обобщение педагогического опыта, моделирование содержания обучения и др.
2. Методы эмпирического исследования: наблюдение, тестирование, анкетирование, собеседование, констатирующий и формирующий педагогические эксперименты, контент-анализ продуктов учебной деятельности студентов, обучающихся решению задач, анализ деятельности педагогов и учащихся и др.
3. Статистические методы обработки данных исследования и диагностики на основе методов математического моделирования учебной деятельности как процесса поиска действий, преобразующих условие задачи для достижения конечной цели; использование методов корреляционного анализа; формализация учебной деятельности посредством введения траектории деятельности и уровней самостоятельности деятельности обучающегося.
Научная новизна исследования
1. Впервые на основе системного подхода разработана концепция индивидуализации математической подготовки студентов вузов в условиях применения средств ИКТ как основа повышения качества математической подготовки студентов вузов, включающая комплекс принципов:
- взаимной адаптации обучающегося и системы обучения математике и интерактивности управления учебной деятельностью;
- поисковой активности студентов в процессе научения решению математических задач и саморегуляции учебной деятельности студентов;
- развития индивидуального стиля учебной деятельности студента и итеративности процесса научения решению математических задач;
8
- мониторинга процессуальных характеристик учебной деятельности студентов, обучающихся решению математических задач, и компьютерной диагностики динамики развития индивидуального стиля их учебной деятельности.
2. Сформулированы принципы интерактивного управления учебной деятельностью студентов: принцип адекватности компьютерных моделей математическим объектам; принцип моделинга, или управляемости моделей математических объектов и процессов; принцип предвидения или прогноза состояния системы обучения; принцип обратной связи между причиной и следствием; принцип рандомизации или управляемой неопределенности проблемной среды математических задач; принцип развития учебной деятельности.
3. Разработана функционально-структурная модель интерактивного управления учебной деятельностью студентов в процессе обучения решению математических задач, включающая информационные, институциональные и мотивационные модули управляющих воздействий, реализованных на основе средств ИКТ.
3. Разработан и запатентован способ обучения и диагностики обучаемости решению задач на основе средств ИКТ, увеличивающий эффективность интерактивного управления учебной деятельностью студентов, обучающихся решению математических задач.
4. Разработана концепция динамических компьютерных тестов-тренажеров (ДКТТ), основанная на:
- слежении и протоколировании учебных действий студента в режиме реального времени;
- распознавании величины рассогласования текущего и целевого состояния решения задачи (представленного информацией о «расстоянии до цели») и его корректировке через механизмы местной обратной (отрицательной и положительной) связи;
- изменении относительной частоты подачи информации о «расстоянии до цели», обусловленной достигнутым уровнем самостоятельности учебной деятельности студента через механизмы главной обратной связи.
5. Созданы инструментальные средства интерактивного управления учебной деятельностью студентов в вузе: динамические тесты-тренажеры по математике; компьютерные системы обработки данных об учебной деятельности обучающихся.
6. Разработана методика реализации интерактивного управления учебной деятельностью студентов в процессе обучения математике, обеспечивающая его индивидуализацию: система динамических компьютерных тестов-тренажеров научения деятельности по решению алгоритмических и пространственных математических задач; методы:
9
диагностики траекторий учебной деятельности и уровней самостоятельности студентов, обучающихся решению математических задач, диагностики индивидуальных стратегий поиска студентами решения математических задач, фазовых портретов учебной деятельности, диагностики обучаемости и индуктивного порога учебной деятельности студентов, анализа связи между уровнем развития базовых когнитивных функций мозга и индивидуальными стилями пространственной учебной деятельности студентов.
Теоретическая значимость исследования заключается: во введении и теоретическом обосновании принципа взаимной адаптации, определяющего особенности личностно ориентированного подхода к интерактивному управлению учебной деятельностью студентов в вузе; в психолого-педагогическом обосновании дидактических принципов интерактивного управления учебной деятельностью студентов при научении решению математических задач; во введении новых понятий проблемной среды математических задач и параметра обратной связи между обучающимся и преподавателем (управляющим центром); в определении структуры и содержания динамических компьютерных тестов-тренажеров по математике; концептуальном обосновании применения динамических компьютерных тестов-тренажеров по математике при индивидуализации математической подготовки студентов в вузе; возможностей дальнейшей исследовательской работы с целью расширения сферы приложения предлагаемой концепции, разработки путей ее реализации, а также иных видов учебной деятельности студентов в высших учебных заведениях. Кроме того, предлагаемые подходы могут найти применение и в разработке методических аспектов индивидуализации обучения математике в школе.
Практическая значимость исследования определяется тем, что: разработанные автором диссертации динамические компьютерные тесты-тренажеры математических задач используются в учебном процессе как инструментальные средства индивидуализации математической подготовки студентов в вузе; применение сформулированных дидактических принципов интерактивного управления учебной деятельностью студентов в вузе реализует личностно деятельностный подход при обучении математике студентов, что обеспечивает качество их математической подготовки; созданы монографии, учебные пособия и методические рекомендации по применению динамических компьютерных тестов-тренажеров по математике; разработанные методы диагностики: траекторий учебной деятельности и уровней самостоятельности студентов, обучающихся решению математических задач, ивдивицуатьных стратегий поиска студентами решения математических задач, фазовых портретов учебной деятельности, обучаемости и индуктивного порога учебной деятельности студентов, связи между уровнем развития базовых когнитивных функций мозга и
10
индивидуальными стилями пространственной учебной деятельности студентов эффективно применяются для выявления индивидуальных характеристик учебной деятельности студентов; выделен класс математических задач, позволяющих проводить диагностику процессуальных характеристик учебной деятельности студентов; разработан и используется в учебном процессе новый курс по выбору «Компьютерные системы управления и диагностики учебной деятельности» доя студентов и слушателей курсов повышения квалификации преподавателей математики средней и высшей школы, способствующий внедрению методики индивидуализации математической подготовки обучающихся.
Результаты исследований могут быть использованы преподавателями математики в вузах и учителями в средних школах при практической реализации индивидуализации математической подготовки учащихся.
Практическая значимость подтверждена свидетельствами на программные продукты по диагностике процессуальных характеристик учебной деятельности и патентом изобретения «Способ обучения и диагностика обучаемости».
Достоверность и надежность результатов исследования обеспечивается:
- опорой на фундаментальные исследования из областей психологии, педагогики, информатики, кибернетики, систем искусственного интеллекта и системного анализа, методов системной динамики и методики преподавания математики;
- опытно-экспериментальной деятельностью в процессе личного преподавания и руководства научной работой других преподавателей и аспирантов, успешной защитой, (под руководством автора) двух кандидатских диссертаций по теории и методике обучения математике;
- обобщением большого объема теоретических и экспериментальных данных, полученных в результате проведенного исследования, и научной глубиной, а также доказательностью и обоснованностью теоретических положений, на которые опирается данное исследование;
- соответствием полученных результатов общим тенденциям в отечественной и мировой теории и практике управления и диагностики учебной деятельности.
Организация и основные этапы исследования. Исследование проводилось в несколько этапов.
На первом этапе (2000-2004 гг.) изучались и анализировались философские, психолого-педагогические и научно-методические исследования. Разработана функционально-структурная модель интерактивного управления учебной деятельностью студентов в процессе научения решению математических задач, созданы опытные
11
инструментальные средства диагностики учебной деятельностью (динамические компьютерные тесты-тренажеры по математике), проведен констатирующий эксперимент. Обозначены основы подхода к решению проблемы.
На втором этапе (2004-2008 гг.) проведены поисковый эксперимент, разработана концепция индивидуализации математической подготовки студентов в вузе на основе интерактивного управления учебной деятельностью студентов в процессе научения решению математических задач, получен патент на изобретение «Способ обучения и диагностики обучаемости», созданы динамические компьютерные тесты-тренажеры по математике и методы диагностики процессуальных характеристик учебной деятельности студентов, обучающихся решению математических задач, проведена начальная стадия формирующего эксперимента.
На третьем этапе (2008-2011 гг.) в ходе завершающего формирующего эксперимента выявлялись условия практической реализации концепции индивидуализации математической подготовки студентов в вузе на основе интерактивного управления учебной деятельностью студентов и диагностики ее процессуальных характеристик. Дальнейшее практическое использование динамических компьютерных тестов-тренажеров по математике. Уточнение, систематизация и обобщение материалов исследования.
Апробация результатов исследования
Основные положения диссертационного исследования докладывались и обсуждались на следующих научно-практических конференциях:
- международных: материалы международных научно-практических конференций «Новые информационные технологии в университетском образовании». Новосибирск, 1999; 2001; 2007; Международной научной конференции «56-е Герценовские чтения по проблемам обучения математике в школе и вузе». С-Петербург, 2003; Международной научно-методической конференции «Развитие системы образования в России XXI века». Красноярск, КГУ, 2003; «Информационные технологии в образовании». Москва, 2003; Международной научно-методической конференции «Современные проблемы преподавания математики и информатики». Тула, 2004; Международной научно-практической конференции «Внутривузовские системы обеспечения качества подготовки специалистов». Красноярск, 22-23 ноября 2005 г.; Международной научно-технической конференции ВИС-2006, «Виртуальные и интеллектуальные системы», Барнаул; Международной научной конференция «Информатизация обучения математике и информатике: педагогические аспекта». Минск, 2006 г.; The International Scientific Colloquium «Competences and teacher competence», Osijek, 18-19 april 2007; Международной научно-практической конференции
12
«Информатизация педагогического образования». Екатеринбург, 2007; Education and global society challenges - Nowy Sacz, 2007; Lifelong learning for sustainable development. - Svzak/ Jssue, 1, Rijeka. - 2008; Problèmes, exercices et jeus créatifs, - Saint-Sorlin d'Arve, Franse, 2008; XIV Международной открытой научной конференции «Современные проблемы информатизации в анализе и синтезе программных и телекоммуникационных систем». Воронеж, 2009; XVII Международной конференции «Математика. Образование». Чебоксары, 2009; XVI Международной конференции. «Математика. Компьютер. Образование». Пущино, 2009; IV Международной конференции «Новые информационные технологии в образовании для всех: инновационные методы и модели». Киев, 2009; Международной научной конференции «Информатизация образования - 2010. Педагогические аспекты создания информационно-образовательной среды». Минск, 2010; V Международной конференции «Виртуальные и интеллектуальные системы». Барнаул, 2010;
- всероссийских и республиканских: Научно-методический симпозиум Академии информатизации образования «Информационные технологии и методология обучения точным наукам». Москва, декабрь, 2002; Всероссийская научно-методическая конференция «Совершенствование систем управления качеством подготовки специалистов». Красноярск, 2003; Всероссийский семинар преподавателей математики педвузов и университетов: Тверь, XX3I-2003, Саратов XXIV-2005, Челябинск ХХШ-2004, Пермь, XXVÜ-2008; Всероссийской научно-методической конференции «Совершенствование систем управления качеством подготовки специалистов». Красноярск, 2003; Всероссийского семинара «Моделирование неравновесных систем». Красноярск, VII-2004, VIH-2005, Х-2007, ХП-2009; Всероссийский семинар «Нейроинформатика и ее приложения». Красноярск, ХН-2004, ХШ-2005; XIV - 2006, XVHI-2010.
Внедрение результатов исследований. База исследования
В исследовании приняли участие более 600 студентов. Опытно-экспериментальная проверка разработанных теоретических и практических основ индивидуализации математической подготовки студентов осуществлялась на базе Красноярского государственного педагогического университета им. В.П. Астафьева и Сибирского федерального университета.
Результаты исследования внедрены и используются: при повышении квалификации учителей в Красноярском краевом институте повышения квалификации и профессиональной переподготовки работников образования; в учебном процессе факультета физики информатики и ВТ Красноярского государственного педагогического университета им. В.П. Астафьева, в инженерно-строительном институте на кафедре технической механики
13
Сибирского федерального университета (СФУ), в школах г. Красноярска и Красноярского края.
Положения, выносимые на защиту
1. Индивидуализация математической подготовки, основанная на принципах: взаимной адаптации обучающегося и системы обучения математике и интерактивности управления учебной деятельностью; поисковой активности студентов в процессе научения решению математических задач и саморегуляции учебной деятельности студентов; развития индивидуального стиля учебной деятельности студента и итеративности процесса научения решению математических задач; мониторинга процессуальных характеристик учебной деятельности студентов, обучающихся решению математических задач, и компьютерной диагностики динамики развития индивидуального стиля их учебной деятельности, является концептуальной основой повышения качества математической подготовки студентов в вузе.
2. Основные принципы концепции индивидуализации математической подготовки студентов реализуются на основе интерактивного управления их учебной деятельностью, включающего информационные, институциональные и мотивационные модули управляющих воздействий средствами ИКТ.
3. Основными индикаторами диагностики процессуальных характеристик учебной деятельности студентов по решению математических задач, способствующих индивидуализации их математической подготовки, являются: параметр обратной связи обучающегося и ДКТТ; траектория поиска решения задач и уровень самостоятельности учебной деятельности студента; стратегия поиска решения задач; фазовые портреты учебной деятельности и индуктивные пороги обобщений; обучаемость и динамические пределы обучаемости; уровень развития пространственного воображения; уровень способности к дифференцировке и распознавание объектов; объем оперативной памяти; время принятия решения; уровень направленного внимания.
4. Если интерактивное управление учебной деятельностью студентов в процессе обучения математике осуществляется по методике, основанной на использовании: системы динамических компьютерных тестов-тренажеров по решению алгоритмических и пространственных математических задач; специальных методов диагностики: траекторий учебной деятельности и уровней самостоятельности студентов, обучающихся решению математических задач, шщиввдуатьных стратегий поиска студентами решения математических задач, фазовых портретов учебной деятельности, обучаемости и индуктивного порога учебной деятельности студентов, связи между уровнем развития базовых когнитивных функций мозга и
14
индивидуальными стилями пространственной учебной деятельности студентов, то это обеспечит индивидуализацию математической подготовки студентов в вузе.
Структура и объем диссертации
Диссертация состоит из Введения, четырех глав, Заключения, библиографического списка, приложений. Диссертация иллюстрирована схемами, рисунками, таблицами, графиками.
ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ
Во Введении обоснована актуальность диссертационного исследования, дан краткий анализ состояния проблемы, определена цель, сформулирована рабочая гипотеза, поставлены задачи исследования, аргументированы научная новизна, теоретическая и практическая значимость работы, сформулированы основные положения, выносимые на защиту.
В главе 1 «Теоретические основы индивидуализации математической подготовки студентов на основе деятельностного подхода» дан анализ современного состояния индивидуализации обучения студентов в вузе, который показал, что теоретико-методологическая сущность индивидуализации обучения в высшей школе реализуется посредством различных форм и видов дифференциации, направленных на учет индивидуальных особенностей обучаемых (Ю.К .Бабанский., A.A. Бударный, JI.C. Выготский, Н.Я. Виленкин, А. Г. Мордкович, JI.B. Шкерина и др.). Показано, что основное внимание исследователей обращено на результативную сторону процесса обучения (уровень сформированное™ знаний, умений, навыков). В то же время процессуальная сторона усвоения, характеризующая индивидуальную избирательность в выборе способов познавательной активности, исследована недостаточно. Выявлено, что практически не решается проблема разработки педагогических основ технологий самообучения и самовоспитания студентов на основе формирования соответствующих психологических механизмов. В то же время именно в самостоятельной работе студенты могут реализовать индивидуальный темп изучения материала, определить направление изучения: от частного к общему или от общего к частному, т. е. реализовать присущий им индивидуальный стиль познания (В.П, Беспалько, В.А. Гусев, Л.В. Жарова).
Существующие теории (А.Л. Кирсанова, Г.В.Берулава, О.А.Зимовина и др.) индивидуализации процесса обучения преимущественно адаптивны и направлены на изучение приспособительной активности обучающегося на основе учета доминирующих когнитивных стилей студента. Однако данные диагностики когнитивных стилей студентов не позволяют провести анализ динамики изменений учебной деятельности в процессе научения и,
15
соответственно, не дают адекватного инструментария для индивидуализации математической подготовки студентов.
Выдвигается и обосновывается необходимость введения процессуальных характеристик учебной деятельности, описывающих индивидуальные особенности динамики изменения учебной деятельности студентов. Сделан вывод, что эффективность учебной деятельности по научению решению математических задач становится лично значимой для студента при соответствующем внешнем управлении учебно-познавательной деятельностью. Из анализа исследований (В.П. Беспалько, И.В. Роберт, В.Р. Майер и др.) следует, что индивидуализация математической подготовки студентов может быть реализована средствами ИКТ в условиях управления учебно-познавательной деятельностью.
Установлено, что адаптация системы управления процессом обучения к индивидуальным характеристикам студента ограничена возможностями используемой модели обучаемого (Л.А. Растригин, Д.А. Новиков и др.) и сообщающим характером процесса обучения, основанного на субъект-объектных отношениях между обучающим и обучаемым. Получено, что для управления учебной деятельностью и поисковой активностью обучающихся решению задач система управления сообщающим обучением неэффективна (В.П. Беспалько, В.М. Монахов, Е.И. Машбиц, Е.С. Полат).
Показано, что при научении решению математических задач возрастает продуктивная составляющая учебной деятельности студента, а это требует существенного увеличения степени интерактивности управления. Необходимость этого обусловлена потребностью повышения эффективности управления поиском решения задач, что достигается усилением информационного взаимодействия обучающегося и системы управления в направлении содействия студенту в саморегуляции учебной деятельности с учетом его индивидуальных особенностей.
Анализ показал, что саморегуляция учебной деятельности реализуется в процессе поиска, который имеет на начальном этапе научения как случайную, так и целенаправленную составляющие последовательности учебных действий при решении задач. По мере повторения решений аналогичных задач случайная составляющая (метод проб и ошибок) учебных действий исчезает, уступая место целенаправленной осознанной последовательности учебных действий. Прежде чем исполнить действия, человек мысленно продумывает последствия этих действий и соотносит то, насколько он в результате приблизится к цели. Эта ориентировочная фаза выполнения действий связана с включением сознания для осмысления и принятия решения. Исполнительная часть действия есть результат принятого решения. Заключительная фаза выполнения действия (контрольно-коррекционная) определяет саморегуляцию учебной деятельности как
16
активную составляющую учебной деятельности. Выделены принципы саморегуляции поиска решения задач (Л.Л. Гурова, Л.М. Фридман, А.И. Крупное).
Учебная деятельность в процессе обучения студентов решению математических задач является итеративным научением (Д.М. Новиков, Б. Хегенхан и др.). Показано, что интерактивное управление учебной деятельностью учитывает итеративный характер научения решению математических задач посредством обратной связи, регулирующей уровень самостоятельности учебной деятельности, что отражает личностно-развивающий подход в обучении.
Установлено, что итеративное научение имеет два аспекта-результативный и процессуальный. Результативный аспект итеративного научения обусловлен умственными усилиями и поисковой активностью студента в условиях постоянства внешней среды. Второй аспект научения связан с приспособлением студента к некоторому виду деятельности. Он носит процессуальный, адаптивный характер. Исследование процессуального аспекта научения состоит в создании и анализе моделей учебной деятельности, объясняющих закономерности процессов управления, саморегуляции и адаптации обучающихся к деятельности по решению математических задач.
Сделан вывод о том, что в основе индивидуализации математической подготовки студентов лежит учет способностей студентов к деятельности по решению математических задач. Это требует разработки соответствующих технологий и методов диагностики процессуальных характеристик учебной деятельности на основе средств ИКТ.
Анализ исследований (Л.Л. Гурова, В.А. Крутецкий, З.И.Калмыкова) математических способностей позволил выделить ключевые компоненты, входящие в общую структуру математических способностей студентов. В результате было выяснено, что способных студентов характеризует своеобразное аналигико-синтетическое восприятие условий задачи, когда они быстро схватывают основные отношения, составляющие существо задачи, не упуская в то же время конкретные данные. Их мышление характеризуют гибкость умственных процессов, способность быстро переключаться с одной умственной операции на другую, свобода от навязчивого действия шаблонов и трафаретов. Важную роль в структуре математических способностей студентов играет способность к пространственным представлениям. По классическому определению Ф. Энгельса, предметом изучения математики служат количественные и пространственные формы действительного мира. Одной из особенностей математики является алгоритмичность решения многих ее задач. Алгоритм
представляет собой обобщение, так как применим ко всем задачам соответствующего типа.
Выделены следующие компоненты математических способностей: способность к формализации математического материала; способность обобщать математический материал; способность к оперированию числовой и знаковой символикой; способность к «последовательному», правильно расчлененному логическому рассуждению; способность к обратимости мыслительного процесса; способность мыслить свернутыми структурами; гибкость мышления (способность переключаться с одной умственной операции на другую); математическая память на обобщения, формализованные структуры, логические схемы; способность к геометрическим или пространственным представлениям.
Указанные представления о компонентах математических способностей служат основанием выбора математических задач, которые используются для выявления индивидуальных особенностей процесса научения решению математических задач.
Выбор математических задач определяется возможностями представления решения задачи в материализованной форме. Это означает, что соответствующие математические понятия (объекты) могут быть представлены компьютерными моделями. Это могут быть точки, линии, координатные оси и плоскости, графики функций, неравенства, уравнения и системы уравнений, геометрические и пространственные объекта и их фрагменты, математические символы и тексты и т. п. В ряде исследований (Е.И. Гужвенко, Т.В. Капустина, И.В. Роберт и др.) отмечается целесообразность использования средств ИКТ, обеспечивающих возможность выполнения построений на экране (в том числе в динамике) математических объектов, графиков функций, диаграмм, описывающих динамику изучаемых закономерностей; создания экранных изображений геометрических объектов и их динамического представления.
Выявлено, что интерактивное управление учебной деятельностью в процессе математической подготовки студентов позволяет реализовать следующие методические цели: формирование представлений о функциональной зависимости в условиях интерактивного взаимодействия обучающей системы со студентом; самостоятельное «открытие» закономерностей в построении графиков при компьютерной визуализации; формирование умения конструировать геометрические и пространственные объекты; возможность исследовать математические модели, изменяя их параметры, создавать собственные модели; формирование умения выдвигать предположения и гипотезы, разрабатывать методы их проверки в условиях интерактивного управления; построение экранных объектов по заданным параметрам в системах, реализующих возможности компьютерной графики;
18
построение двухмерных стереометрических изображений трехмерных объектов.
Анализ управления учебной деятельностью студентов, обучающихся решению математических задач, показал, что интерактивность управления существенно возрастает, если компьютерная система может анализировать условия перехода от одного фрагмента ситуации (контента) к другому так же, как и обучающийся. В данном случае ЭВМ накладывает собственные, в том числе и прогностические «соображения» на индивидуальную траекторию движения обучающегося по контенту. Студент ищет решение задач, манипулируя компьютерными моделями математических объектов. Итеративный характер научения, а также информационное подкрепление деятельности студентов в процессе манипулирования моделями математических объектов определяют условия интерактивности управления поиском решения задач.
Сделан вывод о том, что в основе индивидуализации математической подготовки студентов лежат диагностика способностей студентов к адаптации к деятельности по решению математических задач и разработка соответствующих технологических и методических основ диагностики процессуальных характеристик учебной деятельности. Показано, что система интерактивного управления учебной деятельностью должна реализовать личностно-развивающий подход и отражать «субъект-субъектные» отношения между преподавателем и обучающимся (И.Я. Лернер, И.А. Зимняя, В.И. Ефимов, З.И. Калмыкова и др.).
Показано, что интерактивное управление учебной деятельностью способствует реализации принципа взаимной адаптации обучающегося и системы обучения, учитывает способности студентов к саморегуляции поиска решения математических задач и позволяет получать данные об индивидуальных процессуальных характеристиках учебной деятельности студентов.
Предложена и сформулирована концепция индивидуализации математической подготовки студентов вуза на основе средств ИКТ, включающая принципы:
- взаимной адаптации обучающегося и системы обучения математике и интерактивность управления учебной деятельностью;
- поисковой активности студентов в процессе научения решению математических задач и саморегуляции учебной деятельности студентов;
- итеративности процесса научения решению математических задач и развития индивидуального стиля учебной деятельности студента в процессе научения решению математических задач;
- мониторинга процессуальных характеристик, и компьютерной диагностики учебной деятельности студентов, обучающихся решению математических задач.
Таким образом, положения концепции выявляют и обосновывают необходимость разработки теоретических и практических основ систем интерактивного управления учебной деятельностью как условия индивидуализации математической подготовки студентов, что обеспечит качество математического образования выпускников высшей школы.
В главе 2 «Система интерактивного управления учебной деятельностью как условие индивидуализации математической подготовки студентов» сформулированы дидактические принципы интерактивного управления учебной деятельностью студентов, обучающихся решению математических задач, включающие: принцип адекватности компьютерных моделей математических объектов; принцип моделинга, состоящий в том, что моделями математических объектов и процессов можно было бы манипулировать, а в процессы вмешиваться, например, с целью изучения; принцип предвидения определяет способность системы управления изменять условия информационного обеспечения деятельности студента на основе прогноза состояния обучающегося; принцип обратной связи между причиной и следствием, который состоит в том, что управляющие воздействия определяются не только системой управления, но и самим обучающимся; принцип рандомизации состоит в регулировании неопределенности (хаотизации) параметров проблемной среды математических задач; принцип развития состоит в том, что интерактивное управление содействует совершенствованию структуры системы его действий по решению математических задач.
Введено понятие проблемной среды, которая определяется как совокупность условий, обеспечивающих студенту возможности осуществления учебной деятельности по научению решению математических задач. Выделены основные компоненты проблемной среды, включающие: постановку математической задачи; рабочее поле с компьютерными моделями математических объектов; подсистему управления этими объектами (кнопки управления, мышка, клавиатура); центр управления учебной деятельностью, состоящий из датчиков, исполнительного механизма и вычислительного модуля.
Дана классификация типов проблемных сред, включающая: полностью или частично наблюдаемые, стохастические, эпизодические, дискретные, статические и полудинамические. Сделан вывод о том, что компьютерные модели проблемных сред включают инвариантную и случайную составляющие. Инвариантная составляющая проблемной среды включает в себя тип математических задач, характер организации процесса научения, наличие
20
или отсутствие ресурсных ограничений на время и объемы' работ, используемые модели адаптационных механизмов проблемной среды к обучающемуся. Случайная составляющая проблемной среды определяет неопределенность, стимулирующую поисковую активность студентов. Описаны основные способы адаптации проблемной среды к учебной деятельности студентов, которые состоят из информационной поддержки учебных действий студентов в виде информации о «расстоянии до цели» или гомеостатического регулирования числа ошибочных действий.
Проведен анализ «институционального», информационного и мотивационного управления поиском решения математических задач. Управление учебной деятельностью по решению задач включает: «институциональные» управляющие воздействия - иА (целенаправленное изменение допустимого множества действий); мотивационные управляющие воздействия - и„ (уровни самостоятельности); информационные управляющие воздействия - и, (информация, используемая обучающимся для принятия решения о выборе действия). Установлено, что удовлетворение потребности студента в самостоятельности является ведущим мотивом в саморегуляции его учебной деятельности, направленной на увеличение уровня самостоятельности. Выявлено, что эффективность управления зависит от того, насколько полная информация о действиях и состоянии среды будет поступать в управляющий центр. Сделан вывод о том, что решение проблемы индивидуализации математической подготовки студентов обусловливает необходимость диагностики индивидуальных особенностей самоорганизации учебной деятельности студентов, проявляемых в процессе их информационного взаимодействия с проблемными средами математических задач. Показана необходимость усиления информационного взаимодействия и возможностей изучения обучающихся в процессе научения или самообучения.
Установлено, что условием развития учебной деятельности является неравновесность состояния обучающегося (И. Пригожин, М.Н. Моисеев), что ведет к перестройке организации структуры системы действий студента. Система интерактивного управления учебной деятельностью обеспечивает самонастройку не только студента к проблемной среде, но и самонастройку проблемной среды к потенциальным возможностям студента.
Разработана функционально-структурная модель интерактивного управления процессом научения решению математических задач (рис. 1).
Выявлено, что интерактивное управление учебной деятельностью по научению решению математических задач, основанное на принципе саморегуляции студентами своих учебных действий, не нарушает естественного хода процесса развития учебной деятельности.
IV грозен;
I уровень
Рис. 1. Функционально-структурная модель системы интерактивного управления учебной деятельностью
Анализ свойств системы интерактивного управления с позиции теории информации, синергетики и теории функциональных и развивающихся систем позволил сделать выводы о том, что:
а) система интерактивного управления учебной деятельностью относится к классу информационных систем, а реализуемые в ней процессы -это процессы передачи, обработки, запоминания накопления и хранения информации;
б) система интерактивного управления является системой организационно-технологического типа потому, что управляющие воздействия направлены на формирование целенаправленного поведения обучающегося;
в) система интерактивного управления относится к классу динамического типа, так как изменение режимов функционирования ее
подсистем обусловлено динамикой изменений учебной деятельности обучающегося.
Выявлено, что функционально-структурная модель интерактивного управления обладает свойствами сложных систем, ей присущи иерархичность структуры и разнообразие связей между ее подсистемами. В отличие от традиционных адаптивных систем управления процессом обучения, предлагаемая система интерактивного управления содействует самоорганизации студентов в процессе их адаптации к деятельности по решению математических задач.
Показано, что функционально-структурная модель интерактивного управления является основой для разработки компьютерных систем управления и диагностики учебной деятельности, получивших название динамических компьютерных тестов-тренажеров.
В главе 3 «Динамические компьютерные тесты-тренажеры по математике как инструментальное средство индивидуализации математической подготовки студентов вуза» проведен анализ проблемы разработки научно обоснованной методики компьютерной диагностики индивидуальных характеристик личности студентов, обучающихся решению математических задач. Выявлено противоречие, состоящее в том, что, с одной стороны, высшие учебные заведения все больше оснащаются компьютерной техникой, при этом возрастает интенсификация процесса учебно-познавательной деятельности студентов. В этой ситуации, чтобы управлять процессом математической подготовки, учитывая индивидуально-типологические особенности студентов, необходимо иметь надежные и оперативные средства диагностики. С другой стороны, в настоящее время мы не располагаем методическим, а также соответствующим технологическим и программным обеспечением, которое в должной мере отвечало бы возникшей необходимости учитывать индивидуальность познавательной деятельности студента.
Сформулированы задачи методологии компьютерной диагностики индивидуально-типологических особенностей личности студента, осуществляющего учебную деятельность. Проанализированы сущность, структура и комплекс средств компьютерной диагностики индивидуально-типологических особенностей личности студента.
В результате исследования применения компьютерных технологий в процессе обучения студентов математике раскрыты принципиально новые возможности по организации компьютерной диагностики математических способностей студентов на основе данных об учебной деятельности студентов, полученных в процессе научения решению математических задач.
Показано, что применяемые диагностические методики направлены на измерение уровня сформированное™ знаний, умений и навыков, развития способностей, но не выявляют, как и почему он достиг этого уровня. Используемые компьютерные технологии в диагностике процесса обучения ориентированы не на диагностику процесса обучения, а только на его конечный результат (B.C. Аванесов, С.Г. Данилюк, К.Р. Червинская).
23
На основе функционально-структурной модели интерактивного управления разработаны динамические компьютерные тесты-тренажеры (ДКТТ) по математике, позволяющие получить «Т»-данные, отражающие индивидуальную динамику изменения учебной деятельности студентов в процессе итеративного научения решению математических задач.
Разработан метод компьютерного «наблюдения» и записи действий студентов в процессе научения, который является информационной основой системы интерактивного управления в ДКТТ по математике. Компьютерная запись учебных действий студентов проводится с учетом их синтаксического и семантического смыслов. Применение компьютерного наблюдения позволяет получать информацию, которая необходима для функционирования системы интерактивного управления целенаправленной деятельностью по поиску решения математических задач. Введена оригинальная система кодирования синтаксической и семантической информации и записи данных в протокол в режиме реального времени, позволяющая получать объективные «L»- и «Т»-данные об учебной деятельности в условиях индивидуализации математической подготовки студентов.
Показано, что компьютерное «наблюдение», осуществляемое системой интерактивного управления учебной деятельностью, удовлетворяет требованиям, предъявляемым к наблюдению как к научному методу. Это: ^целенаправленность; 2)избирательность; 3)плановость; 4)системность; 5) организованность; 6) фиксируемого»; 7) адекватность; 8) полнота.
Установлено, что компьютерное «наблюдение» не влияет на ход событий (действий) и не препятствует естественному проявлению индивидуальных особенностей процессуальных характеристик учебной деятельности студентов. Показано, что как научный метод компьютерное «наблюдение» включает в себя процедуру фиксации данных. Фиксации подлежат не только факты наблюдаемой учебной деятельности, но и объективные и субъективные условия, сопутствующие обстоятельства и т. п. Соответствующие сведения о деятельности студента и управляющего центра компьютерная система записывает в разработанный автором диссертации протокол записи продуктов деятельности. Формат протокола включает запись информации в режиме on-line как в синтаксической, так и семантической форме. Запись учебной деятельности студента в текстовый файл-протокол включает: тип действия - семантическая информация; время принятая решения; правильность (код - 1) или неправильность (код - 0) выполненного действия - синтаксическая информация. Протокол данных о действиях системы интерактивного управления ДКТТ включает: уровень самостоятельности студента (мотивационное управление); включение и выключение датчиков «институционального» и информационного управления, моменты включения и выключения канала обратной связи. Введены функции траектории деятельности и уровней самостоятельности студента, которые характеризуют его учебную деятельность.
Показано, что содержательная и концептуальная сторона динамических компьютерных тестов-тренажеров по математике и внутренняя логика их использования соответствуют концепции индивидуализации математической подготовки студентов вуза. Определены дидактические условия, выполнение которых необходимо в ДКТТ для поддержания поисковой активности обучающихся решению математических задач.
Описаны компоненты структуры ДКТТ,включающие: 1) генератор заданий и проблемную среду с множеством математических объектов и действий, необходимых для поиска решения задач; 2) модуль системы интерактивного управления учебной деятельностью студента, содержащий: подсистему наблюдения за действиями обучающегося; подсистему записи информации о деятельности обучающегося и управляющего центра; б) подсистему, регулирующую работу механизмов обратной связи; 3) модуль компьютерной обработки записанной информации и интерпретации полученных данных об изменении учебной деятельности испытуемого.
Индивидуализация процесса научения решению математических задач в ДКТТ достигается за счет того, что: во-первых, для каждого студента генерируется своя, практически неповторимая последовательность задач; во-вторых, система интерактивного управления учебной деятельностью содействует студенту в саморегуляции поиска решения задач, не ограничивая проявления индивидуальных математических способностей студента. Подсистема, генерирующая задачи, дает студенту возможность осуществлять деятельность в материализованной форме. Для этого ДКТТ обладает достаточно развитыми графическими средствами отображения решения задачи.
Анализ функционирования основных подсистем ДКТТ показал, что динамические компьютерные тесты-тренажеры по математике являются эффективным средством индивидуализации математической подготовки студентов. Это обусловлено тем, что ДКТТ позволяют не только получать данные о процессуальных характеристиках научения решению задач по математике, но и в максимальной степени индивидуализировать процесс математической подготовки.
Разработана не имеющая аналогов теоретическая основа создания компьютерных средств поиска решений задач в пространстве состояний задач. Граф пространства состояний задачи задается: начальным состоянием, правилами перехода из текущего состояния в ближайшие состояния задачи и целевым состоянием. Вершины графа соответствуют возможным состояниям задачи, а дуги, соединяющие вершины, отвечают действиям, которые может совершать студент. На рис. 2. приведен пример графа пространства состояний задачи преобразования графика функции у = х в график функции
1 . у = --х-1.
На рис. 2 приведены оптимальная (штриховые линии) и неоптимальная (сплошные линии) траектории перехода из начального в целевое состояние. Студент находит решение математических задач, проявляя индивидуальные особенности психики и математических способностей через процессуальные характеристики учебной деятельности по поиску целевого состояния.
При разработке ДКТТ реализована возможность принятия решения о внешних управлениях деятельностью студента на основании информации о поиске решения задач в пространстве состояний.
(-1.2)
Рис. 2. Граф пространства состояний решения задачи по преобразованию графика линейной функции из начального состояния (1,0) в целевое (-1/3, -1)
Если студент не совершает ошибок и умеет отличать текущее состояние задачи от целевого, то никаких внешних управлений его деятельностью не требуется. Если же он не в состоянии это делать, то возникает необходимость в информации о «расстоянии до цели». Получено, что вероятность информационной помощи при выполнении 1 -го задания равна
Р = 2(1—Р/ "* ) ,
К1"1
где Р,'1 = —— - относительная частота правильных действий при
выполнении / -1 -задания; N1'" - число правильных действий, К^1 - общее число действий, совершенных при выполнении г -1 -задания.
Чем больше правильных действий совершил обучающийся при выполнении г -го задания, тем реже будет оказываться информационная помощь при выполнении 1 +1 -задания, и наоборот, чем меньше совершается ошибок, тем реже подается информация о «расстоянии до цели». В конце научения решению задач частота информационной поддержки равна нулю. Впервые в теории и практике обучающих систем введен важный параметр
обратной связи количественно описывающий динамику обратной связи между обучающимся и ДКТТ и процессуальный аспект научения:
^ =РГ -РГ +РГ , где Р3"1 - относительная частота сообщений информации о «расстоянии до цели». На рис. 3 приведены графики изменения коэффициента обратной связи. Видно, насколько разным может быть процесс научения решению задач в проблемной среде.
Показано, что конечной целью развития учебной деятельности является достижение параметром обратной связи нулевого значения и, соответственно, адаптации студента к деятельности по решению математических задач. Завершение процесса научения предполагает, что студент становится самостоятельной личностью в решении математических задач.
№1 №2 №3
Рис.3. Параметр обратной связи как функция номера задачи.
Обучающиеся №1, №2, №3
В проблемной среде ДКТТ генерируются математические задачи определенного типа. Например, задачи, связанные с функционально-графической линией вводного курса математики, задачи аналитической геометрии, задачи по конструированию пространственных объектов и т. д. Так же, как и в реальном мире, каждая новая ситуация (задача) в чем-то ! отличается от предыдущих задач. Студенту не сообщается напрямую, как I поступить или какое действие совершить. Он на основе своего опыта узнает, какие действия приводят к наибольшему продвижению к цели. Действия студентов определяются не только сиюминутным результатом, но и последующими действиями и информационными подкреплениями. Эти I свойства ДКТТ (метод «проб и ошибок» и подкрепление с задержкой) являются его основными характеристиками. Обучение в ДКТТ не определяется конкретными методами обучения и характеризуется действиями студента в проблемной среде и откликами этой среды.
ДКТТ содействуют такому поведению студента, которое необходимо для его активной адаптации к изменяющейся проблемной среде. Выделено четыре вложенных уровней адаптации обучающегося: 1) изменение информированности о проблемной среде; 2) изменение поведения (действий, выбираемых на основе имеющейся информации); 3) изменение структуры деятельности, позволяющей реализовывать более эффективное в изменившихся
условиях поведение; 4) целенаправленное изменение проблемной среды (активная адаптация).
Показано, что в результате развития учебной деятельности по научению решению математических задач параметр обратной связи К стремится к нулю. Учитывая, что обучающийся является сложной системой, адаптация определяется как процесс целенаправленного изменения параметров и структуры деятельности обучающегося, который состоит в определении критериев ее функционирования и выполнения этих критериев. Завершение процесса адаптации предполагает независимость деятельности обучающегося решению математических задач от управляющей системы.
Сделан вывод о необходимости разработки методов диагностики процессуальных характеристик учебной деятельности по математике на основе использования ДКТТ как инструментальных средств, позволяющих проводить измерения изменений учебной деятельности. Показано, что ДКТТ позволяют получать данные как о структуре системы действий, так и о параметре обратной связи К.
В главе 4 «Методика интерактивного управления учебной деятельностью студентов на основе компьютерной диагностики ее процессуальных характеристик» описаны диагностические процедуры, включающие: метод диагностики траекторий и уровней самостоятельности; диагностику стратегий поиска решения алгоритмических задач; метод фазовых портретов учебной деятельности; метод диагностики обучаемости и индуктивного порога; метод диагностики развития структуры системы действий.
Метод диагностики траекторий деятельности и уровней самостоятельности основан на анализе специально разработанного протокола деятельности обучающегося, который представляет собой запись деятельности в виде последовательности 1 (правильные действия) и О (неправильные действия) в режиме реального времени. Графическое изображение протоколов данных деятельности по конструированию пространственных объектов для успешного студента №1 и неуспешного студента №2 представлено на рис. 4.
а) б)
Рис. 4. Траектория учебной деятельности при решении 1-й задачи: а) обучающийся №1; б) обучающийся №2
Показано, что мотивация достижения самостоятельности студента, то есть деятельности в отсутствие информационной помощи в ДКТТ, формируется дискретной системой 10 уровней самостоятельности учебной деятельности студента. В ДКТТ уровень самостоятельности действий студента пересматривается после решения очередной задачи по формуле Т = 1 + ГЫТ(10(1 - 2Рд"')),
И'"1
где 2' - номер уровня самостоятельности студента, Рд1 = —- доля
N0
неправильных действий в ь1 -задании ( И, - количество неправильных действий; - общее количество действий). На рис. 5 приведена зависимость номера уровня самостоятельности Ъ от времени I для обучающегося №1 и обучающегося №2, развернутая во времени. Засечки на графике обозначают выполненное задание.
Рис. 5. Уровни самостоятельности учебной деятельности: а) обучающийся № 1; б) обучающийся №2
Для проверки достоверности результатов диагностики уровней самостоятельности проведено сравнение их с данными экспертов. Показано, что данные уровней самостоятельности, полученные в результате эксперимента с ДКТТ, хорошо согласуются с данными экспертов-преподавателей .
В результате применения метода диагностики траектории деятельности и уровней самостоятельности выявлены индивидуальные различия в процессуальных характеристиках учебной деятельности, включающие: частоту совершения ошибок, характер свертки учебных действий, уровень развития дифференцировки и распознавания математических объектов, время принятия решения о выборе действия, частоту повторения ошибок, способности к алгоритмическому мышлению и т. д.
Диагностика уровней самостоятельности учебной деятельности студентов позволила получить информацию об индивидуальных способностях студентов к анализу и синтезу, дифференцированию и обобщению математических операций и алгоритмов. Метод позволяет определить уровень развития направленного внимания и объем оперативной памяти и недостаточную обучаемость.
Диагностика индивидуальных стратегий поиска решения алгоритмических задач основана на обработке протоколов деятельности по поиску решения задач, включающих синтаксическую и семантическую информацию о действиях студента, записанную ДКТТ в режиме реального времени. На основе исследований Гуровой Л.Л. выделено три стратегии поиска решения: 1) случайный поиск; 2) поиск методом «проб и ошибок», или выборочный поиск; 3) интеллектуальный (селективный) поиск.
Рассмотрена диагностика стратегий поиска решения задач «Конструирование кривых второго порядка». Показано, что по мере научения стратегии решения задач количественное соотношение групп студентов изменяется в направлении выбора интеллектуальной стратегии решения. В результате проведенного эксперимента выявлено, что у испытуемых при взаимодействии с алгебраической средой вырабатывается принцип поиска логики решения. Это выражается посредством группировки видов действий в определенной последовательности для достижения результата.
Выявлено, что динамика изменений стратегии поиска решения задач проходит три этапа (рис. 6). На начальном этапе выполнения заданий в когнитивной стратегии испытуемых наблюдается доминирование случайного поиска. На втором этапе, когда выполнено 60 % заданий, случайный поиск сменяется на выборочный поиск, а на заключительном, третьем этапе выборочный поиск сменяется интеллектуальным. Анализ стратегии случайного поиска показал, что на этапе выполнения первых заданий (около 30 % от их общего числа) подавляющее число испытуемых не смогли сразу аккумулировать ранее приобретенные знания и предыдущий опыт, поэтому ими была выбрана стратегия случайного поиска. Тем не менее кривая случайного поиска в этом промежутке резко идет вниз. Это говорит о том, что знания определенной части студентов быстро актуализируются и в последующих заданиях они меняют стратегию случайного поиска на более продуктивную.
На следующем этапе, (примерно до 70 % от общего числа выполненных заданий) кривая случайного поиска монотонно убывает, охватывая группу студентов примерно от 10 до 20 человек. Можно предположить, что этой группе студентов необходимо выполнить большее число однотипных заданий для смены стратегии поиска решения. В то же время на этапе выполнения последних заданий кривая случайного поиска не опускается до нуля. Есть небольшая группа испытуемых (около 10 % от общего числа), которые так и не сменили стратегию. Эта группа студентов показывают недостаточную специфическую обучаемость математике.
Кривая интеллектуального поиска возрастает на протяжении всего периода работы по решению задач испытуемыми. На этапе выполнения первых заданий (30 %) кривая уверенно идет вверх, то есть определенная часть испытуемых быстро приходят к данной стратегии как самой продуктивной. Можно утверждать, что студенты этой группы имеют высокий уровень обучаемости математике.
30
С^оэначехия:
— - инг»л.тютуал»нь'й ГТ№ГСК
.....выборочный поиск
- - случайный гоиск
Рис. 6. Динамика числа студентов с доминирующей стратегией поиска решения задачи в зависимости от доли выполненных заданий
Таким образом, по мере освоения учебного материала у студентов актуализируются математические знания, что выражается в доминировании наиболее эффективного поиска решения задачи - интеллектуального. Студенты отказываются от непродуктивных стратегий поиска решения задач.
Показано, что продолжительность взаимодействия студента с ДКТТ, уровень развития индивидуального когнитивного ресурса личности и степень информационной энтропии помогают студенту выбрать наиболее эффективный способ адаптации к деятельности по решению задач. Выработка когнитивной стратегии решения задачи с доминированием наиболее эффективного поиска решения является показателем обучаемости студентов математике как основного критерия индивидуализации математической подготовки студентов.
Метод фазовых портретов учебной деятельности позволяет выявить качественную картину динамики изменения учебной деятельности студентов. Установлено, что в качестве обобщенной координаты состояния учебной деятельности необходимо взять относительную частоту правильных
ар
действий Р. В этом случае на плоскости (Р;—-) можно построить фазовый
ш
портрет учебной деятельности студента.
На рис. 7 приведены фазовые портреты учебной деятельности студентов с существенно разной обучаемостью математике. Фазовая траектория обучающегося б) в процессе научения переходит в устойчивое равновесное состояние полной обученности (рис. 7 б). В этом состоянии студент не нуждается в информационной помощи для осуществления деятельности по выполнению заданий. Фазовый портрет студента а) отвечает квазиколебательному режиму (рис. 7а).
<а>ли 2 1
2 1
-1 -2
О -1
-2
0.5 0.6 0.7 0.8 0.9 1
0.5 О.б 0.7 0.8 0.9 1 Р
б;
Рис. 7. Фазовые портреты учебной деятельности: а) обучающегося с НСО по математике; б) обучающегося, достигающего полной обученности решению задач по математике (Вертикальная ось <1Р/(11 имеет цену деления 0.012с~',>
Видно, что студент «зациклен» на внешнюю помощь. Стоит центру управления перевести студента на более высокий уровень достижения и соответственно уменьшить частоту подкрепления, как он начинает совершать неправильные действия. Доля правильных действий уменьшается, и центр управления переводит студента в состояние, отвечающее уровню ниже. Далее все повторяется до тех пор, пока обучающийся не уяснит алгоритм решения задачи. В данном случае наблюдается явление недостаточной специфической обучаемости (НСО).
На основе метода фазовых портретов получены экспериментальные данные, из которых следует, что в выборке 250 обучающихся 79 % имеют недостаточную обучаемость математике, степень которой определяется номером достигнутого уровня и является динамическим пределом обучаемости. На рис. 7 приведена гистограмма динамических пределов. Выявлено, что методика диагностики динамических пределов, начало которой было положено работами Фейерстейна, открывает ряд перспектив в диагностике индивидуальных различий учебной деятельности студентов. Связывая оценку и обучение, они стимулируют исследования пределов изменяемости академической способности и содействуют разработке программ оптимальной коррекции учебной деятельности учащихся.
Установлено, что метод фазовых портретов учебной деятельности научения решению математических задач является экспресс-диагностикой индивидуальных особенностей процессуальных характеристик учебной деятельности, который диагностирует не только относительную частоту правильных действий, но и дает информацию о скорости изменения относительной частоты правильных действий.
D
0.3 0.25 0.2 0.13 0.1 O.OJ 0
Рис & Гистограмма динамических пределов
Метод диагностики обучаемости студентов деятельности по решению математических задач основан на определении обучаемости, введенном Ананьевым Б.Г., который определил обучаемость как особую восприимчивость, способность к получению новых знаний. Обучаемость, или восприимчивость, надо понимать как скорость продуцирования информации. Установлено, что обучаемость имеет две составляющие:
V = - скорость продуцирования информации за задание; V = — -
An At
скорость продуцирования информации за единицу времени. На рис. 9 приведена гистограмма рассеяния концов векторов К0), где j - номер обучающегося (/' = 1, 2, 3, ..., 150) для выборки из 150 студентов факультета физики, информатики и вычислительной техники КГПУ и студентов инженерно-строительного института СФУ. Она представляет облако точек, характеризующее рассеяние обучаемости студентов в пространстве безразмерных относительных скоростей v„ и v,.
Из анализа данных, приведенных в приложениях, видно, что наиболее продуктивным с информационной точки зрения является первое задание. При выполнении последующих заданий информационная продуктивность обучающегося уменьшается до нуля или может быть отрицательной в случае, когда обучающийся при недостатке подкрепления со стороны проблемной среды совершает больше ошибочных действий, тем самым выявляя несоответствие своей деятельности уровню, определенному системой управления.
Установлено, что низкая информационная продуктивность деятельности при выполнении задания обусловливает потребность в дополнительном времени на обдумывание действий. Но высокий уровень v„ не гарантирует высоких показателей v,. Однако на приведенной диаграмме наивысшие показатели обучаемости по времени тем не менее демонстрируют обучающиеся с максимальным значением v„. Отмечена связь, что между креативностью и обучаемостью конструированию пространственных объектов связующим звеном является деятельность, связанная с
-
-
-J
п
1 23456789 10
продуцированием образов в воображении. Студенты, способные (или склонные) при выдвижении гипотез мысленно анализировать развитие ситуации вследствие их реализации, имеют преимущество, т. к. не затрачивают дополнительные ресурсы (время, количество совершенных действий и др.) на ее фактическое получение.
• • » • • • •
••• • •
. г*
о.о 1,0 2,0
Рис. 9. Диаграмма рассеяния обучаемости студентов в пространстве V = , V,) при выполнении первого задания
Сделан вывод о том, что технология определения обучаемости по дидактическим темпам может применяться для дифференцирования однородных классов (групп, подгрупп) обучающихся конструированию пространственных объектов в проблемных' средах. Эта интегрированная характеристика указывает на индивидуальные возможности каждого обучающегося.
Сравнительный анализ экспериментальных данных, полученных с помощью применения ДКТТ и методом вызванных потенциалов, позволяющим диагностировать базовые когнитивные функции мозга
В таблице приведены обобщенные данные, иллюстрирующие различия в показателях осуществления учебной деятельности обучающимися с разным уровнем развития базовых когнитивных функций мозга. Видно, что обучающимся с нарушенными функциями необходимо в два раза больше заданий (повторений одной и той же деятельности), чем тем, у кого функции мозга не страдают.
Таблица 1
Дифференциация групп студентов по характеристикам обучения математике
Доля Среднее Среднее время, Среднее время
обучаемых количество затраченное на принятия решения
(%) выполненных обучение (сек.)
заданий (мин.)
Группа 1 57 7 29 3,6
Группа 2 24 9 36 4,2
Группа 3 19 14 45 2,9
Интерес представляет среднее время, затраченное на совершение каждого действия, связанного с установкой или отменой фрагментов. Эта деятельность составляет основу конструирования пространственных объектов в рассматриваемых проблемных средах.
Пятый столбец таблицы 1 иллюстрирует индивидуальные отличия студентов в осуществлении деятельности по этому параметру. Обучающиеся третьей группы совершают действия с наименьшим временным интервалом. Это говорит о том, что функциональная недостаточность процессов опознания и дифференцировки в совокупности со снижением объема оперативной памяти и направленного внимания не позволяют им конструировать требуемое изображение «в голове». Для компенсации такого рассогласования возникает потребность скорее перенести фрагмент на рабочее поле и, исходя из фактической ситуации, выбрать необходимое действие. Обучающиеся второй группы нормально опознают и дифференцируют предлагаемые фрагменты изображения, но дисфункция процессов направленного внимания и снижение объема оперативной памяти требуют дополнительного ресурса времени для принятия решения о совершении действия.
У студентов I курса КГПУ им. В.П. Астафьева и студентов СФУ проводилась диагностика базовых когнитивных функций мозга (БКФМ). Объем выборки составил более 130 человек. Проведенный педагогический и нейрофизиологический эксперимент показал, что около 48 % студентов имеют недостаточный уровень сформированности БКФМ. При работе с ДККТ студенты этой группы осуществляют поиск решения задач, применяя метод проб и ошибок. Безошибочной деятельности при решении задач такие студенты научаются после многократного решения одинаковых или аналогичных задач. В то же время часть студентов выбирают другую стратегию решения задач, которая состоит в том, что основную деятельность они осуществляют в уме. Например, в уме конструируют пространственные объекты, решают алгоритмические задачи. Как показывает применение
ДКТТ, таким студентам требуется гораздо меньше времени и заданий для завершения обучения.
В диссертационном исследовании проводились педагогические эксперименты по выяснению эффективности применения динамических компьютерных тестов-тренажеров по математике в качестве инструментального средства индивидуализации математической подготовки студентов вузов и, соответственно, повышения качества математической подготовки студентов. Общее количество участников экспериментальных исследований составило 300 студентов. В контрольной группе обучение математике проводилось традиционными методиками, в экспериментальной группе математическая подготовка студентов осуществлялась в рамках практической реализации разработанной концепции индивидуализации математической подготовки на основе применения динамических компьютерных тестов-тренажеров по математике. После завершения темы «Кривые второго порядка» результаты контрольного среза оказались одинаковыми (рис. 10а). Средний балл как в экспериментальной, так и в контрольной группе одинаковый и равен 3.6. Через год был сделан повторный контрольный срез в экспериментальной и контрольной группах студентов. Из рис. 106 видно, что результаты контрольного среза в экспериментальной группе существенно выше, чем в контрольной.
Различие результатов обучения обусловлено способом получения информации о решении математических задач. При традиционном обучении студенты контрольной группы получают знания, выступая в роли рецепторов. Психолого-педагогический анализ показал, что знания, полученные традиционным способом, имеют декларативный характер, поэтому забываются гораздо быстрее, ответы поверхностны, фрагментарны. Индивидуализация обучения математике на основе использования динамических компьютерных тестов-тренажеров приводит к тому, что студенты самостоятельно продуцируют информацию. Студенты в экспериментальной группе отличаются от студентов контрольной группы прочностью, полнотой и глубиной полученных знаний.
Необходимость и целесообразность применения предложенных методов диагностики процессуальных характеристик учебной деятельности для индивидуализации математической подготовки студентов вузов определяются тем, что:
- в учебной деятельности по научению решению математических задач проявляются индивидуальные особенности математических способностей студентов;
ДКТТ позволяют интерактивно управлять организацией индивидуального обучения студентов математике, формировать навыки саморегуляции и рефлексии при решении математических задач с
одновременным получением диагностической информации о процессуальных характеристиках учебной деятельности;
- полученные данные о процессе научения решению математических задач достоверны и объективны, что обусловлено компьютерным «наблюдением» и фиксацией данных в ДКТТ, исключающих влияние диагностических процедур на поведение студента;
('¡•р.тнт! ойял ткл» шгрштгсг абучеии
ВЗхСП ОКоит
('¡>МШВ1 93.11 шмле г«ярпмг» перерыв»
3 ■
г-
1 ■ еде-
взксп вксита
а) б)
Рис. 10. Результаты экспериментальной проверки эффективности индивидуализации математической подготовки
- диагностические процедуры автоматизированы, органично встроены в учебный процесс и позволяют получать большие объемы диагностической информации в доступной графической форме;
- применение ДКТТ в качестве инструментального средства измерения развития учебной деятельности дает преподавателям математики возможности адекватно дифференцировать студентов с учетом их индивидуальных стилей учебной деятельности;
- диагностика процессуальных характеристик учебной деятельности, которая является внешним проявлением внутренней деятельности и психической активности студентов, позволяет получать информацию о типах нервной системы, уровне сформированности базовых когнитивных функций мозга студентов и наличии или отсутствии недостаточной специфической обучаемости математике.
При индивидуализации математической подготовки студентов преподавателю математики не нужно проводить специальные психологические диагностические исследования когнитивных стилей студентов, типов их нервной системы и темпераментов. Полученная в этих
исследованиях диагностирующая информация имеет косвенное, опосредованное отношение к учебной деятельности студентов, решающих математические задачи. Применение ДКТТ в качестве инструментального средства позволяет диагностировать индивидуальные различия учебной деятельности студентов на основе данных о том процессе, который мы хотим индивидуализировать. Экспериментальные исследования эффективности применения ДКТТ показали, что индивидуализация математической подготовки студентов вузов повышает качество математического образования, вследствие увеличения продуктивной составляющей процесса обучения существенно возрастают объемы остаточных знаний и навыков решения задач по математике.
ЗАКЛЮЧЕНИЕ
1. В настоящем исследовании разработана концепция индивидуализации математической подготовки студентов вузов на основе применения средств ИКТ.
2. Впервые сформулирован принцип взаимной адаптации студента и системы обучения, обобщающий личностно ориентированный подход к обучению. Раскрыто содержание этого принципа применительно к преподаванию математики в вузе. Установлено, что принцип взаимной адаптации учебной деятельности студента включает целый комплекс приемов и интерактивность управлений, направленных на достижение максимально эффективного содействия процессу саморегуляции поиска решения задач и самоорганизации структуры системы действий обучающегося. Показано, что реализация принципа взаимной адаптации направлена на увеличение уровня самостоятельности студента.
3. На основе изучения психолого-педагогических и методико-математических аспектов, трудов ведущих отечественных и зарубежных исследователей математического образования и педагогической психологии, а также анализа опыта применения средств ИКТ в диагностике и управлении процессом обучения математике установлено, что теоретические положения концепции индивидуализации математической подготовки студентов в вузе реализуются в условиях интерактивного управления учебной деятельностью по обучению решению математических задач.
4. Сформулированы принципы интерактивного управления учебной деятельностью студентов: принцип адекватности компьютерных моделей математическим объектам; принцип моделинга, или управляемости моделей математических объектов и процессов; принцип предвидения или прогноза состояния системы обучения; принцип обратной связи между причиной и следствием; принцип рандомизации или управляемой неопределенности
проблемной среды математических задач; принцип развития учебной деятельности.
5. Разработана функционально-структурная модель интерактивного управления учебной деятельностью студентов в процессе обучения решению математических задач, включающая информационные, институциональные и мотивациошше модули управляющих воздействий, реализованных на основе средств ИКТ.
6. Анализ содержания учебного материала, осуществляемый с позиции деятельностного подхода к обучению решению математических задач, позволил выяснить типы задач, математические объекты которых можно представлять в виде компьютерных моделей. Деятельность по решению математических задач на основе средств ИКТ имеет материализованную форму, и студент осуществляет поиск решения задач, манипулируя компьютерными моделями математических объектов. Показано, что в круг таких задач входят алгоритмические задачи, отражающие функционально-графическую линию изучения начал математического анализа, задачи аналитической геометрии, а также задачи на конструирование пространственных объектов, включая геометрические задачи на построение.
7. Разработан и запатентован способ обучения и диагностики обучаемости решению задач на основе средств ИКТ, увеличивающий эффективность интерактивного управления учебной деятельностью студентов, обучающихся решению математических задач.
8. Сформулирована концепция динамических компьютерных тестов-тренажеров, основанная на: слежении и протоколировании учебных действий студента в режиме реального времени; распознавании величины рассогласования текущего и целевого состояния решения задачи (представленного информацией о «расстоянии до цели») и его корректировке через механизмы местной обратной (отрицательной и положительной) связи; изменении относительной частоты подачи информации о «расстоянии до цели», обусловленной достигнутым уровнем самостоятельности учебной деятельности студента через механизмы главной обратной связи.
9. Процесс решения математических задач представляется как поиск целевого состояния задачи в пространстве состояний, что позволяет определить величину рассогласования между текущим и целевым состояниями задачи и организовать интерактивное управление учебной деятельностью студентов в процессе решения математических задач.
10. Созданы инструментальные средства интерактивного управления учебной деятельностью студентов в вузе: динамические тесты-тренажеры по математике; компьютерные системы обработки данных об учебной деятельности обучающихся.
И. Предложена система средств педагогического воздействия на студентов в процессе индивидуализации математической подготовки на
основе применения динамических компьютерных тестов-тренажеров. Эти средства можно использовать как в процессе обучения математике, так и при организации самостоятельной и научно-исследовательской работы студентов. В исследовании раскрыта важная роль информационных и «институциональных» управляющих воздействий в мотивации процесса решения текущих задач, а также формирование мотивации достижения стратегической цели научения, состоящей в достижении максимального уровня самостоятельности в решении математических задач.
12. В исследовании разработана методика интерактивного управления учебной деятельностью студентов в вузе, основанная на индикаторах диагностики процессуальных характеристик учебной деятельности студентов по решению математических задач, способствующих индивидуализации их математической подготовки. Показано, что такими индикаторами являются: параметр обратной связи обучающегося и ДКТТ; траектории поиска решения задач и уровень самостоятельности учебной деятельности студента; стратегии поиска решения задач; фазовые портреты учебной деятельности и индуктивные пороги обобщений; обучаемость и динамические пределы обучаемости; уровень развития пространственного воображения; уровень способности к дифференцировке и распознавание объектов; объем оперативной памяти; время принятия решения; уровень направленного внимания.
13. В работе рассмотрен разработанный автором диссертации курс лекций, а также организация практических занятий и мастер-классов для преподавателей математики по обучению студентов математике на основе применения динамических компьютерных тестов-тренажеров для реализации индивидуализации математической подготовки и диагностики процессуальных характеристик учебной деятельности студентов вузов.
14. Полученные результаты открывают возможности дальнейшей исследовательской работы с целью расширения сферы приложения предлагаемой концепции индивидуализации математической подготовки, разработки путей ее реализации в других дисциплинах математического цикла, а также иных естественнонаучных циклов в высшей профессиональной школе. Кроме того, предлагаемые подходы могут найти применение в разработке методических вопросов преподавания школьной математики.
ОСНОВНЫЕ ПУБЛИКАЦИИ ПО ТЕМЕ ДИССЕРТАЦИИ
Автор имеет более 100 публикаций (общий объем свыше 60 печатных листов), основными из которых являются:
1. Дьячук П.П., Суровцев В.М. Компьютерные системы управления и диагностики процесса обучения математике: монография. Курск: Изд-во РФЭИ, 2006. 150 с.
2. Дьячук П.П. Динамические компьютерные системы управления и диагностики процесса обучения: монография/ Краснояр. гос. пед. ун-т. Красноярск, 2005. 344 с.
3. Дьячук П.П., Дроздова JI.H., Дьячук П.П. (мл.), Бортновский C.B., Шадрин И.В, Управление адаптацией обучающихся в проблемных средах и диагностика процессов саморегуляции учебных действий: монография. Красноярск: РИО КГПУ, 2010. 383 с.
4. Дьячук П.П., Стюгин A.A. Компьютерные динамические тесты. Психолого-педагогическая диагностика обучаемости: учебное пособие. Красноярск, 2004. 198 с.
Публикации в рецензируемых научных журналах и изданиях из
списка ВАК
5. Дьячук П.П., Шадрин И.В. Динамическое компьютерное тестирование энтропийного фактора деятельности учащихся // Педагогическая информатика. №2. 2005. С. 8 - 12.
6. Дьячук П.П. Интеллектуальные обучающие программы, формирующие компетентности // Информатика и образование. №2. 2005. С. 99 -101.
7. Дьячук П.П. Интеллектуальные обучающие тренажерные системы // Открытое образование. № 2. 2005. С. 29 - 31.
8. Дьячук П.П., Бортновский C.B. Методы компьютерной диагностики обучаемости решению задач // Педагогические измерения. №2. 2005.
С. 18-21.
9. Дьячук П.П. Компьютерные системы управления процессом обучения ученика как неопределенного объекта // Педагогическая информатика. № 1.2006. С. 80-85.
10. Дьячук П.П. Динамическое компьютерное тестирование // Педагогическая информатика. № 3. 2006. С. 3 - 8.
11. Дьячук П.П. Функциональные компьютерные системы управления деятельностью обучающихся решению задач // Информатика и образование. № 7. 2007. С. 102 - 104.
12. Дьячук П.П., Дьячук П.П. (мл.) Функционально-структурная модель динамической информационной системы управления учебной деятельностью // Информатика и образование. №12. 2007. С. 105 - 107.
13. Дьячук П.П., Суровцев В.М. Учебная деятельность как информационный процесс развития обучающегося // Информатика и образование. №1. 2008. С. 123 - 125.
14. Дьячук П.П. Информационное взаимодействие обучающегося и проблемной среды в процессе самоорганизации учебной деятельности // Информатика и образование. №2. 2008. С. 116-118.
15. Дьячук П.П. Об адаптации в компьютерных обучающих системах // Информатика и образование. №10. 2008. С. 118 - 120.
16. Дьячук П.П. Система автоматического управления учебной деятельностью обучающегося // Информатика и образование. 2010. № 5. С. 117-120.
17. Дьячук П.П., Бортновский C.B., Шадрин И.В Системы автоматического управления учебной деятельностью Тг@сК // Открытое образование. №3.2010. С. 8-14.
18. Дьячук П.П., Бортновский C.B., Дьячук П.П. (мл.) Компьютерная диагностика научения решению задач: результатаивный и процессуальный аспекты // Открытое образование. №3. 2011. С. 8 - 15.
19. Дьячук П.П. Индивидуальные траектории решения математических задач // Вестник КГПУ им. В.П. Астафьева. 2010. №1. С. 28 - 34.
20. Дьячук П.П., Пустовалов JI.B. Система управления процессом адаптации к проблемной среде // Системы управления и информационные технологии. 2008. 3.1 (33). С. 144 - 148.
21. Дьячук П.П., Пустовалов Л.В., Суровцев В.М. Система управления поиском решения алгоритмических задач // Системы управления и информационные технологии. 2008. 3.2 (33). С. 258 - 263.
22. Дьячук П.П., Николаева Ю.С. Компьютерные динамические тесты адаптивного поведения человека в проблемной среде // Системы управления и информационные технологии. 2009. №3.1(37). С. 135 - 139.
23. Дьячук П.П., Дьячук П.П. (мл.), Николаева Ю.С. Компьютерные системы управления поиском решения задач // Программные продукты и системы. 2009. №2 (86). С. 128 -130.
24. Дьячук П.П., Дроздова Л.Н., Шадрин И.В. Системы автоматического регулирования учебных действий // Информационно-управляющие системы. №5. 2010. С. 5 -12.
Патент на изобретение и авторские свидетельства
25. Дьячук П.П., Лариков Е.В. Способ обучения и диагностики обучаемости /патент на изобретение № 2294144 Государственный реестр изобретений РФ 27 февраля 2007.
26. Дьячук, П.П., Лариков Е.В., Бортновский C.B. Система диагностики обучаемости при компьютерном динамическом тестировании // Свидетельство об официальной регистрации программы № 2005610418. Реестр программ для ЭВМ. 2005. 50 с.
27. Дьячук П.П., Пустовалов Л.В. Компенсаторная интеллектуальная информационная система «Кривые второго порядка» // Свидетельство об официальной регистрации программы для ЭВМ
№ 2005610830, реестр программ для ЭВМ, И апреля 2005. 50 с.
Статьи
28. Дьячук П.П. Компьютерные тренажеры и обучающие тестовые задания по алгебре // Научный ежегодник КГПУ. Красноярск, 2001. С. 12 - 16.
29. Дьячук П.П., Лариков Е.В., Пак Н.И. Нелинейные технологии в динамических тестовых заданиях по математике (статья) // Сибирский образовательный журнал «Современное образование». №3. 2001 С. 102 -105.
30. Дьячук П.П. Информационные и психолого-педагогические средства динамического тестирования -Труды научно-методического симпозиума Академии информатизации образования «Информационные технологии и методология обучения точным наукам». Москва, декабрь, 2002. С. 145 -158.
31. Дьячук П.П. Информационные модели процесса обучения и динамических тестов-тренажеров // Научный ежегодник Kl НУ. Красноярск, 2003. С. 273 - 280.
32. Дьячук П.П., Ларшсов Е.В., Дьячук П.П. (мл.) Динамика процесса обучения решению алгоритмических задач // Научный ежегодник КГПУ. Красноярск, 2003. С. 314-322.
33. Дьячук П.П., Бортновский C.B., Лариков Е.В. Компьютерная система пооперационного контроля обучения математике-«Математическая и методическая подготовка студентов педвузов и университетов в условиях модернизации системы образования»: материалы 22-го Всероссийского семинара преподавателей математики педвузов и университетов Тверь, 2003. С. 112-115.
34. Дьячук П.П., Бортновский C.B. Компьютерная диагностика недостаточной специфической обучаемости по математике// Современные проблемы преподавания математики и информатики: сб. материалов международной научно-методической конференции. Тула, 2004. С. 83 - 87.
35. Дьячук П.П. Методологические и технологические вопросы компьютерной поддержки уроков математики и физики // Проблемы качества подготовки специалистов в вузе в аспекте компетентностного подхода в обучении: межвузовский сб. Красноярск, 2004. С. 41 - 52.
36. Дьячук П.П. Компьютерные системы управления учебной деятельностью // Научный ежегодник КГПУ. Красноярск, 2004. С. 66 -72.
37. Дьячук П.П., Шадрин И.В. Динамическое тестирование психолого-педагогических особенностей процесса научения // Педагогика развития: образовательные интересы и их субъекты: сб. материалов II Международной научно-практической конференции. Красноярск, 2004. С. 199 - 205.
38. Дьячук П.П. Недостаточная обучаемость математике // Актуальные проблемы преподавания математики в средней школе и педвузах: сб. материалов 23 Всероссийского семинара преподавателей математики университетов и педвузов. Челябинск, 2004. С. 156 - 158.
39. Дьячук П.П. Динамическая система «компьютер + ученик» как средство управления качеством обучения // Проблемы качества подготовки специалистов в вузе в аспекте компетентностного подхода в обучении: межвузовский сб. Красноярск, 2004. С. 52 - 57.
40. Дьячук П.П. Методологические и технологические вопросы компьютерной поддержки уроков математики и физики - Проблемы качества подготовки специалистов в вузе в аспекте компетентностного подхода в обучении: межвузовский сборник. Красноярск, 2004, С. 41 -52.
41. Дьячук П.П., Бортновский С.В. Компьютерная диагностика недостаточной специфической обучаемости по математике Современные проблемы преподавания математики и информатики: материалы международной научно-методической конференции 4.1. Тула, 2004. С. 83- 87.
42. Дьячук П.П. Интеллектуальные обучающие программы, формирующие предметные компетентности. Современные проблемы преподавания математики и информатики: материалы международной научно-методической конференции 4.1. Тула, 2004. С. 153 -157.
43. Дьячук П.П., Малова Й.П., Суровцев В.М. Компьютерная диагностика и управление процессом обучения // Вестник КГПУ им. В.П. Астафьева. Красноярск, 2006. С.104 - 109.
44. Дьячук П.П., Шадрин И.В., Стюгин А.А., Малова И.П. Динамические интеллектуальные системы, диагностирующие когнитивные стратегии процесса научения решению математических задач // Ползуновский альманах «Виртуальные и интеллектуальные системы». Барнаул, 2006. №4. С. 91-95.
45. Дьячук П.П. Управление процессом адаптации обучаемого к динамическим проблемным средам Информатизация обучения математике и информатике; педагогические аспекты: материалы международной научной конференции. Минск, 2006. С. 106 -112.
46. Дьячук П.П. Активные системы управления процессом обучения // the International Scientific Colloquium «Competences and teacher competence» // Osijek, 2007. C. 165 - 168.
47. Дьячук П.П. Активные системы управления учебной деятельностью // Учёные записки института информатизации образования. М., 2007. Вып. 24. С. 148-152.
48. Дьячук П.П., Дроздова JI.H. Cognitive strategies of an individual and dynamic characteristics of learning activity in solving mathemtical problems // Education and global society challenges. Nowy Sacz, 2007. C. 83 - 89.
49. Дьячук П.П., Дроздова Л.Н. Functional system of control in the groups of people studying the process jf task solving // Education and global society challenges. Nowy Sacz, 2007. C. 103 -108.
50. Дьячук, П.П., Шадрин И.В. Динамическая информационная система управления и диагностики обучаемости // Информационные технологии моделирования и управления. 2008. № 2 (45). С.229 - 237.
51. Дьячук ПЛ., Дроздова JI.H. Диагностика динамики когнитивных стратегий поиска решений задач и когнитивных функций мозга студентов в процессе обучения // Competences and teacher competence // Osijek, 2007. С. 169-173.
52. Дьячук П.П., Сентябов А.М. Entropy of learning activity as state of development parameter // Lifelong learning for sustainable development. Svzak/ Jssue, 1, Rijeka. 2008. C.293 - 299.
53. Дьячук П.П., Стюгин A.A., Шадрин И.В. Компьютерная диагностика обучаемости // Молодёжь. Образование. Карьера: материалы международной научной конференции. Красноярск, 2008. С. 96 -101.
54. Дьячук П.П. Компьютерная диагностика функции воображения // Высокие интеллектуальные технологии и инновации в образовании и науке: материалы XVI Международной научно-методической конференции. С-Петербург, 2009. С. 174 - 175.
55. Дьячук П.П., Суровцев В.М. Формирование алгоритмов решения математических задач у студентов на основе применения динамических информационных систем управления учебной деятельностью // Проблемы подготовки будущего учителя к инновационной педагогической деятельности и пути их решения: межвузовсий сборник научных трудов. Красноярск: РИО КГПУ, 2009. Вып. П. С. 202 - 225.
56. Дьячук П.П. Индивидуализация математической подготовки на основе компьютерной диагностики адаптивного поведения студентов, обучающихся решению задач // Качество предметной подготовки будущего учителя: традиции и инновации: сборник научных трудов коллектива научной школы «Качество педагогического образования» КГПУ им. В.П. Астафьева. Красноярск, 2009. С.154 - 166.
Подписано в печать 10.02.12. Формат 60x84 1/16. Усл. печ. л. 2,81 Бумага офсетная. Тираж 150 экз. Заказ № 21 Цена свободная
Отпечатано ООО Издательство «Красноярский писатель» 660060, г. Красноярск, ул. А. Лебедевой, 89, тел.: (391)2114-800,2114-865. Е-таН:ата^ата2007@таП.ги
Содержание диссертации автор научной статьи: доктора педагогических наук, Дьячук, Павел Петрович, 2012 год
Введение.
Глава 1. Теоретические основы индивидуализации математической подготовки студентов на основе деятельностного подхода
§1.1. Психолого-педагогические основы индивидуализации обучения студентов в вузе.
§1.2. Учебно-познавательная деятельность студентов и основы управления
§1.3. Учебная деятельность как активная саморегулируемая составляющая учебно-познавательной деятельности.
§1.4. Итеративное научение как способ управления и саморегуляции учебной деятельности студентов на основе средств ИКТ.
§1.5. Концепция индивидуализации математической подготовки студентов в условиях интерактивного управления учебной деятельностью на основе средств ИКТ.
Выводы по главе 1.
Глава 2. Система интерактивного управления учебной деятельностью как условие индивидуализации математической подготовки студентов
§2.1. Основные принципы интерактивного управления учебной деятельностью обучающихся решению математических задач.
§2.2. Проблемные среды математических задач как условие интерактивного управления учебной деятельностью.
§2.3. Информационное и «институциональное» регулирование поиска решения математических задач.
§2.4. Мотивационное управление учебной деятельностью студентов.
§2.5. Самоорганизация учебной деятельности студентов в процессе научения решению математических задач.
§2.6. Функционально-структурная модель интерактивного управления учебной деятельностью.
Выводы по главе 2.
Глава 3. Динамические компьютерные тесты-тренажеры по математике как инструментальное средство индивидуализации математической подготовки студентов вуза
§ 3.1. Компьютерные технологии в исследовании индивидуальных характеристик учебно-познавательной деятельности обучающихся.
§ 3.2. Метод компьютерного наблюдения в динамических компьютерных тестах-тренажерах по математике как основа интерактивного управления учебной деятельностью.
§3.3. Основные принципы разработки динамических компьютерных тестовтренажеров.
§ 3.4. Структура динамических компьютерных тестов-тренажеров.
§3.5. Моделирование пространства состояния математических задач в динамических компьютерных тестах-тренажерах.
§3.6. Динамические компьютерные тесты-тренажеры как средство индивидуализации математической подготовки и измерения изменений учебной деятельности.
Выводы по главе 3.
Глава 4. Методика интерактивного управления учебной деятельностью студентов на основе компьютерной диагностики ее процессуальных характеристик
§ 4.1. Метод диагностики траекторий учебной деятельности и уровней самостоятельности студентов, обучающихся решению математических задач.
§ 4. 2. Диагностика индивидуальных стратегий поиска решения математических задач студентами.
§ 4.3. Применение метода фазовых портретов для анализа индивидуальных особенностей учебной деятельности студентов.
§ 4.4. Методы диагностики обучаемости студентов деятельности по решению математических задач.
§ 4.5. Метод анализа связи между способом деятельности и уровнем развития базовых когнитивных функций мозга студента.
§ 4.6. Содержание и программа курса «Компьютерные системы интерактивного управления учебной деятельностью студентов».
Выводы по главе 4.
Введение диссертации по педагогике, на тему "ИНДИВИДУАЛИЗАЦИЯ МАТЕМАТИЧЕСКОЙ ПОДГОТОВКИ СТУДЕНТОВ НА ОСНОВЕ ИНТЕРАКТИВНОГО УПРАВЛЕНИЯ УЧЕБНОЙ ДЕЯТЕЛЬНОСТЬЮ"
Актуальность исследования. В настоящее время в образовании сложилась ситуация, когда резко возросли требования общества к качеству высшего профессионального образования. Поскольку одним из факторов, определяющих результативность профессиональной деятельности выпускников вузов, является уровень математического образования специалистов, то особое значение приобретает качество математической подготовки студентов вуза.
Возросшие требования к качеству математической подготовки студентов вуза делают актуальным поиск новых путей повышения эффективности обучения математике будущих специалистов, в том числе на основе применения современных информационных технологий. В работах ряда авторв (А.П. Ершов, М.П. Лапчик, В.Р. Майер, В.М. Монахов, Л.П. Мартиросян, И.В. Роберт, М.И. Рагулина, Н.И. Пак и др.) подчеркивается необходимость использования средств информационно-коммуникационных технологий (PIKT) при обучении математике. Однако в них не уделяется должного внимания индивидуализации математической подготовки студентов в вузе на основе применения современных информационных технологий как условия повышения качества математической подготовки студентов.
Несмотря на пристальное внимание исследователей (В. П. Беспалько, Г. А. Балл, В. А. Басова, В. А. Гусев, Т.И. Гурова, Л.В. Жарова, В.А. Крутецкий, В.И. Крупич, И.Я. Лернер, Г.Л Луканкин, Л.В Шкерина и др.) к проблеме управления учебной деятельностью студентов в вузе, направленной на мобилизацию их личностного потенциала в процессе самостоятельной учебной деятельности при решении математических задач, до сих пор не разработаны теоретические основы интерактивного управления учебной деятельностью студентов в вузе. В интерактивном управлении математической подготовкой студентов это требует учета особенностей 5 субъект-субъектных отношений между центром управления (преподавателем) и студентом.
Индивидуализация учебно-познавательной деятельности студентов организуется, как правило, с помощью дифференцированных учебных заданий (В.В. Бобков, В.В. Гузеев, В.И. Крупич, М.А. Низамутдинова, И.П. Подласый, И.М.Смирнова, JI.B. Шкерина и др.), в процессе выполнения которых происходит поэтапное усвоение учебной информации (П.Я. Гальперин, В.В. Давыдов, А.Н. Леонтьев, Н.Ф. Талызина, Д.Б. Эльконин и др.). В ряде работ (М.А. Холодная, М.Н. Берулава, O.A. Зимовина и др.) предлагается осуществлять индивидуализацию процесса обучения студентов в вузе на основе диагностики психологических характеристик обучаемых через, например, когнитивные стили деятельности. При этом очевидно, что при прочих равных условиях индивидуализация обучения существенно зависит от характера изучаемого предмета, поэтому при решении проблемы индивидуализации математической подготовки студентов на основе применения средств ИКТ необходимы специальные исследования, учитывающие специфику учебной деятельности студентов, обучающихся решению математических задач.
Проблема индивидуализации процесса обучения в контексте повышения качества предметной подготовки на основе управления учебно-познавательной деятельностью рассматривалась в ряде психологических и дидактических исследований (JI.C. Выготский, П.Я. Гальперин, Н.Ф. Талызина, И.Я. Лернер, В.В. Давыдов, Е.И. Машбиц, А.Г. Мордкович, Т.И. Шамова, Г.И. Щукина, Л.В. Шкерина и др.).
Индивидуализация математической подготовки студентов в вузе направлена на развитие личности, способности студентов к адаптации в динамично изменяющихся проблемных средах. Этого можно достигнуть при интерактивном управлении учебной деятельностью в процессе обучения решению математических задач, учитывающем как адаптацию системы 6 обучения к индивидуальным особенностям личности студента, так и индивидуальные особенности адаптации студента к системе обучения математике. Высокий потенциал интерактивного управления учебной деятельностью студентов в вузе при индивидуализации математической подготовки обусловлен учетом индивидуальных характеристик саморегуляции учебной деятельности студентов в процессе научения решению математических задач.
В настоящее время существует необходимость в средствах ИКТ, обеспечивающих саморегуляцию студентами учебной деятельности в процессе обучения решению математических задач. Это в значительной степени обусловлено отсутствуем концепции индивидуализации математической подготовки студентов в вузе на основе применения средств ИКТ.
Разработка и внедрение новых информационных технологий, ориентированных на развитие индивидуальности личности, создание единого образовательного и информационного пространства, нашли отражение в целом ряде научных исследований (П.Л. Брусиловский, М.П. Лапчик, В.М. Монахов, Л.П. Мартиросян, И.Р. Роберт, М.И. Рагулина, О.Г. Смолянинова, Н.И. Пак, и др.).
Тем не менее проблема развития новых форм применения средств ИКТ в области интерактивного управления процессом обучения математике является актуальной и требует своего разрешения. Решение этой проблемы позволит реализовать потенциал дидактических возможностей средств ИКТ в процессе индивидуализации математической подготовки студентов в вузе.
Сложность решения проблемы интерактивного управления обусловлена отсутствием функционально-структурной модели интерактивного управления учебной деятельностью студентов в процессе решения математических задач и недостаточным учетом потенциала современных средств ИКТ.
Для интерактивного управления учебной деятельностью студентов необходимо разработать: компьютерные инструментальные средства индивидуализации математической подготовки студентов в вузе; компьютерные системы сбора индивидуальной и групповой информации об учебной деятельности студентов; средства наглядного представления математических объектов, процессов как в виде моделей, так и в виде геометрических интерпретаций (диаграммы, графики, таблицы и пр.); средства и методы диагностики процессуальных характеристик учебной деятельности.
Индивидуальные особенности процессуальных характеристик учебной деятельности студентов в вузе, в частности обучаемость студентов решению алгоритмических и пространственных задач; базовые когнитивные функции мыслительной деятельности студентов (память, время принятия решений, направленность внимания и т. п.) могут быть диагностированы с помощью систем интерактивного управления учебной деятельностью студентов.
Однако до настоящего времени не была разработана компьютерная система интерактивного управления учебной деятельностью студентов, обеспечивающая индивидуализацию математической подготовки студентов в вузе на основе информации о процессуальных характеристиках учебной деятельности студентов.
Все сказанное позволило выявить основные противоречия между: -существующими возможностями повышения качества математической подготовки выпускников вузов на основе индивидуализации обучения математике и слабым использованием этих возможностей в реальном образовательном процессе;
-достаточной изученностью основных положений индивидуализации обучения студентов на общем психолого-педагогическом уровне и недостаточной проработанностью методических аспектов индивидуализации обучения математике студентов вуза;
- разработанностью деятельностных основ индивидуализации обучения и отсутствием соответствующей им методической модели интерактивного управления учебной деятельностью студентов, направленной на индивидуализацию математической подготовки;
- достаточным уровнем развития ИКТ как средства реализации модели интерактивного управления учебной деятельностью студентов, направленной на индивидуализацию математической подготовки, и отсутствием эффективных методик их использования.
Выделенные противоречия определили проблему исследования, состоящую в индивидуализации математической подготовки студентов на основе использования средств ИКТ как необходимого условия повышения качества математической подготовки студентов.
Цель исследования: разработать концепцию индивидуализации математической подготовки студентов на основе интерактивного управления их учебной деятельностью средствами ИКТ и методику ее реализации.
Объект исследования: математическая подготовка студентов в вузе.
Предмет исследования: индивидуализация математической подготовки студентов на основе применения средств ИКТ.
Гипотеза исследования: если обучение студентов математике осуществлять в условиях системы интерактивного управления их учебной деятельностью, основанного на:
- реализации дидактических принципов интерактивного управления и саморегуляции учебной деятельности в процессе обучения математике;
- алгоритмах интерактивного управления учебной деятельностью студентов в процессе решения математических задач, учитывающих: 1) количественные характеристики обратной связи между обучающимся и (преподавателем) центром управления; 2) процессуальные характеристики учебной деятельности обучаемого (уровень способности к дифференцировке и распознаванию объектов; объем оперативной памяти; уровень развития 9 направленного внимания; время принятия решения; обучаемость; трудозатраты поиска решения задачи, индуктивный порог формирования навыков; уровень развития пространственного воображения; фазовый портрет учебной деятельности обучающегося решению математических задач; траектория поиска решения задач; уровень самостоятельности учебной деятельности), то это будет способствовать индивидуализации их математической подготовки, а именно: определять индивидуальный темп учебной деятельности; необходимый и достаточный объем учебных задач для научения; индивидуальную частоту и объем информационной поддержки процесса обучения решению математических задач, обеспечивающей повышение ее качества.
Проблема исследования, его цель, объект и предмет, а также сформулированная гипотеза обусловили постановку задач исследования.
1. Разработать основные теоретические положения концепции индивидуализации математической подготовки студентов в вузе на основе средств ИКТ.
2. Создать теоретические основы и модель системы интерактивного управления учебной деятельностью студентов в процессе решения математических задач, способствующего индивидуализации математической подготовки студентов в вузе.
3. Разработать динамические компьютерные тесты-тренажеры по математике как инструментальные средства системы интерактивного управления учебной деятельностью студентов.
4. Выявить и обосновать основные индикаторы диагностики процессуальных характеристик учебной деятельности студентов по решению математических задач, определяющие алгоритмы интерактивного управления и способствующие индивидуализации их математической подготовки.
5. Разработать методику интерактивного управления учебной деятельностью студентов, обучающихся решению математических задач, на основе диагностики ее процессуальных характеристик динамическими компьютерными тестами-тренажерами по математике.
Методологической основой исследования являются фундаментальные работы в области педагогики, психологии и теории деятельности и применения деятельностного подхода в образовании:
- деятельностный подход и теория деятельности (Г.А Атанов, Г.П. Щедровицкий, П.Я. Гальперин, А.Н. Леонтьев Н.Ф. Талызина, Л.В. Занков и др.); системно-деятельностный подход к организации учебной деятельности с учетом его синергетического аспекта (В.П Беспалько, В.В. Краевский, И.Я. Лернер, М.Н. Скаткин, С.С. Шевелева и др.); системно-функциональный анализ процесса обучения (К.А. Анохин, Н.Ф. Талызина, В.И. Сосновский, В.И. Тесленко);
- теория моделирования и теория управления (А.И. Уемов, И.Б. Новик, B.C. Гершунский, В.А. Штофф, В.А. Веников, Л.М. Фридман, Л.А. Растригин, Д.М. Ковалев, Д.А. Новиков и др.); исследования в области педагогических технологий и педагогического проектирования (В.А. Сластенин, В.П. Беспалько, B.C. Безрукова, Г.К. Селевко, М.В. Кларин, М.М. Левина, И.О. Яковлева, Л.В. Шкерина и др.);
- теория решения задач (Г.А. Балл, Л.Л. Гурова, A.B. Эсаулов, В.М. Глушков, Л.М. Фридман, Ю.Н. Кулюткин, Н.И. Тулькибаева, A.M. Усова и др.); теория искусственного интеллекта и агентный подход (С. Рассел, П. Норвиг, Дж. Люггер и др.);
- труды педагогов и психологов по структурированию содержания, динамизации методов и приемов обучения, взаимодействия в системе
11 учитель - ученик» (Ю.И. Дик, П.Я. Гальперин, В.В. Давыдов, В. М. Монахов, B.C. Леднев, A.M. Леоньтьев, Б. Скинер и др.);
- концепции информатизации образования (А.П. Ершов, М.П. Лапчик, A.A. Кузнецов, O.A. Козлов, С. Пейперт, Е.С. Полат, Н.И. Пак, И.В. Роберт и
ДР-)
Методы исследования
1. Теоретические методы: анализ философской, методологической, педагогической, научно-технической и методической литературы по проблеме исследования; методы системного анализа и системной динамики, теории управления сложными объектами и организационными системами, систем искусственного интеллекта; общенаучные методы исследования -обобщение, классификация, систематизация, сравнение, моделирование, структурный и функциональный анализ, анализ и обобщение педагогического опыта, моделирование содержания обучения и др.
2. Методы эмпирического исследования: наблюдение, тестирование, анкетирование, собеседование, констатирующий и формирующий педагогические эксперименты, контент-анализ продуктов учебной деятельности студентов, обучающихся решению задач, анализ деятельности педагогов и учащихся и др.
3. Статистические методы обработки данных исследования и диагностики на основе методов математического моделирования учебной деятельности как процесса поиска действий, преобразующих условие задачи для достижения конечной цели; использование методов корреляционного анализа; формализация учебной деятельности посредством введения траектории деятельности и уровней самостоятельной деятельности обучающегося.
Научная новизна исследования
1. Впервые на основе системного подхода разработана концепция индивидуализации математической подготовки студентов вузов в условиях применения средств ИКТ как основа повышения качества математической подготовки студентов вузов, включающая комплекс принципов:
- взаимной адаптации обучающегося и системы обучения математике и интерактивности управления учебной деятельностью;
- поисковой активности студентов в процессе научения решению математических задач и саморегуляции учебной деятельности студентов;
- развития индивидуального стиля учебной деятельности студента и итеративности процесса научения решению математических задач;
- мониторинга процессуальных характеристик учебной деятельности студентов, обучающихся решению математических задач, и компьютерной диагностики динамики развития индивидуального стиля их учебной деятельности.
2. Сформулированы принципы интерактивного управления учебной деятельностью студентов: принцип адекватности компьютерных моделей математическим объектам; принцип моделинга, или управляемости моделей математических объектов и процессов; принцип предвидения или прогноза состояния системы обучения; принцип обратной связи между причиной и следствием; принцип рандомизации, или управляемой неопределенности проблемной среды математических задач; принцип развития учебной деятельности.
3. Разработана функционально-структурная модель интерактивного управления учебной деятельностью студентов в процессе обучения решению математических задач, включающая информационные, институциональные и мотивационные модули управляющих воздействий, реализованных на основе средств ИКТ.
4. Разработан и запатентован способ обучения и диагностики обучаемости решению задач на основе средств ИКТ, увеличивающий эффективность интерактивного управления учебной деятельностью студентов, обучающихся решению математических задач.
5. Разработана концепция динамических компьютерных тестов-тренажеров (ДКТТ), основанная на:
- слежении и протоколировании учебных действий студента в режиме реального времени;
- распознавании величины рассогласования текущего и целевого состояния решения задачи (представленного информацией о «расстоянии до цели») и его корректировке через механизмы местной обратной (отрицательной и положительной) связи;
- изменении относительной частоты подачи информации о «расстоянии до цели», обусловленной достигнутым уровнем самостоятельности учебной деятельности студента через механизмы главной обратной связи.
6. Созданы инструментальные средства интерактивного управления учебной деятельностью студентов в вузе: динамические тесты-тренажеры по математике; компьютерные системы обработки данных об учебной деятельности обучающихся.
7. Разработана методика реализации интерактивного управления учебной деятельностью студентов в процессе обучения математике, обеспечивающая его индивидуализацию: система динамических компьютерных тестов-тренажеров научения деятельности по решению алгоритмических и пространственных математических задач; методы: диагностики траекторий учебной деятельности и уровней самостоятельности студентов, обучающихся решению математических задач, диагностики индивидуальных стратегий поиска студентами решения математических задач, фазовых портретов учебной деятельности, диагностики обучаемости и индуктивного порога учебной деятельности студентов, анализа связи между
14 уровнем развития базовых когнитивных функций мозга и индивидуальными стилями пространственной учебной деятельности студентов.
Теоретическая значимость исследования заключается: во введении и теоретическом обосновании принципа взаимной адаптации, определяющего особенности личностно ориентированного подхода к интерактивному управлению учебной деятельностью студентов в вузе; в психолого-педагогическом обосновании дидактических принципов интерактивного управления учебной деятельностью студентов при научении решению математических задач; во введении новых понятий проблемной среды математических задач и параметра обратной связи между обучающимся и преподавателем (управляющим центром); в определении структуры и содержания динамических компьютерных тестов-тренажеров по математике; в концептуальном обосновании применения динамических компьютерных тестов-тренажеров по математике при индивидуализации математической подготовки студентов в вузе; возможностей дальнейшей исследовательской работы с целью расширения сферы приложения предлагаемой концепции, разработки путей ее реализации, а также иных видов учебной деятельности студентов в высших учебных заведениях. Кроме того, предлагаемые подходы могут найти применение и в разработке методических аспектов индивидуализации обучения математике в школе.
Практическая значимость исследования определяется тем, что: разработанные автором диссертации динамические компьютерные тесты-тренажеры математических задач используются в учебном процессе как инструментальные средства индивидуализации математической подготовки студентов в вузе; применение сформулированных дидактических принципов интерактивного управления учебной деятельностью студентов в вузе реализует личностно деятельностный подход при обучении математике студентов, что обеспечивает качество их математической подготовки; созданы монографии, учебные пособия и методические рекомендации по
15 применению динамических компьютерных тестов-тренажеров по математике; разработанные методы диагностики: траекторий учебной деятельности и уровней самостоятельности студентов, обучающихся решению математических задач, иццивидуальных стратегий поиска студентами решения математических задач, фазовых портретов учебной деятельности, обучаемости и индуктивного порога учебной деятельности студентов, связи между уровнем развития базовых когнитивных функций мозга и индивидуальными стилями пространственной учебной деятельности студентов - эффективно применяются для выявления индивидуальных характеристик учебной деятельности студентов; выделен класс математических задач, позволяющих проводить диагностику процессуальных характеристик учебной деятельности студентов; разработан и используется в учебном процессе новый курс по выбору «Компьютерные системы управления и диагностики учебной деятельности» для студентов и слушателей курсов повышения квалификации, преподавателей математики средней и высшей школы, способствующий внедрению методики индивидуализации математической подготовки обучающихся.
Результаты исследований могут быть использованы преподавателями математики в вузах и учителями в средних школах при практической реализации индивидуализации математической подготовки учащихся.
Практическая значимость подтверждена свидетельствами на программные продукты по диагностике процессуальных характеристик учебной деятельности и патентом изобретения «Способ обучения и диагностика обучаемости».
Достоверность и надежность результатов исследования обеспечивается:
- опорой на фундаментальные исследования из областей психологии, педагогики, информатики, кибернетики, систем искусственного интеллекта и системного анализа, методов системной динамики и методики преподавания математики;
- опытно-экспериментальной деятельностью в процессе личного преподавания и руководства научной работой других преподавателей и аспирантов, успешной защитой (под руководством автора) двух кандидатских диссертаций по теории и методике обучения математике;
- обобщением большого объема теоретических и экспериментальных данных, полученных в результате проведенного исследования, и научной глубиной, а также доказательностью и обоснованностью теоретических положений, на которые опирается данное исследование;
- соответствием полученных результатов общим тенденциям в отечественной и мировой теории и практике управления и диагностики учебной деятельности.
Организация и основные этапы исследования. Исследование проводилось в несколько этапов.
На первом этапе (2000-2004) изучались и анализировались философские, психолого-педагогические и научно-методические исследования. Разработана функционально-структурная модель интерактивного управления учебной деятельностью студентов в процессе научения решению математических задач, созданы опытные инструментальные средства диагностики учебной деятельностью (динамические компьютерные тесты-тренажеры по математике), проведен констатирующий эксперимент. Обозначены основы подхода к решению проблемы.
На втором этапе (2004-2008) проведены поисковый эксперимент, разработана концепция индивидуализации математической подготовки студентов в вузе на основе интерактивного управления учебной деятельностью студентов в процессе научения решению математических задач, получен патент на изобретение «Способ обучения и диагностики
17 обучаемости», созданы динамические компьютерные тесты-тренажеры по математике и методы диагностики процессуальных характеристик учебной деятельности студентов, обучающихся решению математических задач, проведена начальная стадия формирующего эксперимента.
На третьем этапе (2008-2011) в ходе завершающего формирующего эксперимента выявлялись условия практической реализации концепции индивидуализации математической подготовки студентов в вузе на основе интерактивного управления учебной деятельностью студентов и диагностики ее процессуальных характеристик. Дальнейшее практическое использование динамических компьютерных тестов-тренажеров по математике. Уточнение, систематизация и обобщение материалов исследования.
Апробация результатов исследования
Основные положения диссертационного исследования докладывались и обсуждались на следующих научно-практических конференциях:
- международных: материалы международных научно-практических конференций «Новые информационные технологии в университетском образовании». Новосибирск, 1999; 2001; 2007; Международной научной конференции «56 Герценовские чтения по проблемам обучения математике в школе и вузе». С-Пбург, 2003; Международной научно-методической конференции «Развитие системы образования в России XXI века». Красноярск: КГУ, 2003; «Информационные технологии в образовании». М., 2003; Международной научно-методической конференции «Современные проблемы преподавания математики и информатики». Тула, 2004; Международной научно-практической конференции «Внутривузовские системы обеспечения качества подготовки специалистов». Красноярск, 22-23 ноября, 2005; Международной научно-технической конференции ВИС-2006, «Виртуальные и интеллектуальные системы», Барнаул; Международной научной конференция «Информатизация обучения математике и
18 информатике: педагогические аспекты». Минск, 2006; The International Scientific Colloquium «Competences and teacher competence», Osijek, 18-19 april 2007; Международной научно-практической конференции «Информатизация педагогического образования». Екатеринбург, 2007; Education and global society challenges - Nowy Sacz, 2007; Lifelong learning for sustainable development. Svzak/ Jssue, 1, Rijeka. - 2008; Problèmes, exercices et jeus créatifs. Saint-Sorlin d'Arve. Franse, 2008; XIV Международной открытой научной конференции «Современные проблемы информатизации в анализе и синтезе программных и телекоммуникационных систем». Воронеж, 2009; XVII Международной конференции «Математика. Образование». Чебоксары, 2009; XVI Международной конференции. «Математика. Компьютер. Образование». Пущино, 2009; IV Международной конференции «Новые информационные технологии в образовании для всех: инновационные методы и модели». Киев, 2009; Международной научной конференции «Информатизация образования 2010. Педагогические аспекты создания информационно-образовательной среды». Минск, 2010; V Международной конференции «Виртуальные и интеллектуальные системы». Барнаул, 2010;
- всероссийских и республиканских: Научно-методический симпозиум Академии информатизации образования «Информационные технологии и методология обучения точным наукам». М., декабрь, 2002; Всероссийская научно-методическая конференция «Совершенствование систем управления качеством подготовки специалистов». Красноярск, 2003; Всероссийский семинар преподавателей математики педвузов и университетов: Тверь, XXII-2003, Саратов, XXIV-2005, Челябинск, XXIII-2004, Пермь, XXVII-2008; Всероссийской научно-методической конференции «Совершенствование систем управления качеством подготовки специалистов». Красноярск, 2003; Всероссийского семинара «Моделирование неравновесных систем». Красноярск, VII-2004, VIII-2005,
19
Х-2007, ХН-2009; Всероссийский семинар «Нейроинформатика и ее приложения». Красноярск, ХП-2004, ХШ-2005; XIV - 2006, ХУШ-2010.
Внедрение результатов исследований. База исследования
В исследовании приняли участие более 600 студентов. Опытно-экспериментальная проверка разработанных теоретических и практических основ индивидуализации математической подготовки студентов осуществлялась на базе Красноярского государственного педагогического университета им. В.П. Астафьева и Сибирского федерального университета.
Результаты исследования внедрены и используются: при повышении квалификации учителей в Красноярском краевом институте повышения квалификации и профессиональной переподготовки работников образования; в учебном процессе факультета физики информатики и ВТ Красноярского государственного педагогического университета им. В.П. Астафьева, в инженерно-строительном институте на кафедре технической механики Сибирского федерального университета (СФУ), в школах г. Красноярска и Красноярского края.
Положения, выносимые на защиту
1. Индивидуализация математической подготовки, основанная на принципах: взаимной адаптации обучающегося и системы обучения математике и интерактивности управления учебной деятельностью; поисковой активности студентов в процессе научения решению математических задач и саморегуляции учебной деятельности студентов; развития индивидуального стиля учебной деятельности студента и итеративности процесса научения решению математических задач; мониторинга процессуальных характеристик учебной деятельности студентов, обучающихся решению математических задач, и компьютерной диагностики динамики развития индивидуального стиля их учебной деятельности, является концептуальной основой повышения качества математической подготовки студентов в вузе.
2. Основные принципы концепции индивидуализации математической подготовки студентов реализуются на основе интерактивного управления их учебной деятельностью, включающего информационные, институциональные и мотивационные модули управляющих воздействий средствами ИКТ.
3. Основными индикаторами диагностики процессуальных характеристик учебной деятельности студентов по решению математических задач, способствующих индивидуализации их математической подготовки, являются: параметр обратной связи обучающегося и ДКТТ; траектория поиска решения задач и уровень самостоятельности учебной деятельности студента; стратегия поиска решения задач; фазовые портреты учебной деятельности и индуктивные пороги обобщений; обучаемость и динамические пределы обучаемости; уровень развития пространственного воображения; уровень способности к дифференцировке и распознавание объектов; объем оперативной памяти; время принятия решения; уровень направленного внимания.
4. Если интерактивное управление учебной деятельностью студентов в процессе обучения математике осуществляется по методике, основанной на использовании: системы динамических компьютерных тестов-тренажеров по решению алгоритмических и пространственных математических задач; специальных методов диагностики: траекторий учебной деятельности и уровней самостоятельности студентов, обучающихся решению математических задач, ищщвцпуальных стратегий поиска студентами решения математических задач, фазовых портретов учебной деятельности, обучаемости и индуктивного порога учебной деятельности студентов, связи между уровнем развития базовых когнитивных функций мозга и индивидуальными стилями пространственной учебной деятельности
21 студентов, то это обеспечит индивидуализацию математической подготовки студентов в вузе.
Структура и объем диссертации
Диссертация состоит из Введения, четырех глав, Заключения, библиографического списка, приложений. Диссертация иллюстрирована схемами, рисунками, таблицами, графиками.
Заключение диссертации научная статья по теме "Теория и методика обучения и воспитания (по областям и уровням образования)"
Выводы по главе 4
1. Необходимость и целесообразность применения предложенных методов диагностики процессуальных характеристик учебной деятельности для индивидуализации математической подготовки студентов вузов определяются тем, что:
- в учебной деятельности по научению решению математических задач проявляются индивидуальные особенности математических способностей студентов;
ДКТТ позволяют интерактивно управлять организацией индивидуального обучениям студентов математике, формировать навыки саморегуляции и рефлексии при решении математических задач с одновременным получением диагностической информации о процессуальных характеристиках учебной деятельности;
- достоверность и объективность полученных данных о процессе научения решению математических задач обусловлены компьютерным «наблюдением» и фиксацией данных в ДКТТ, исключающих влияние диагностических процедур на поведение студента;
- диагностические процедуры автоматизированы, органично встроены в учебный процесс и позволяют получать большие объемы диагностической информацию в доступной графической форме;
- применение ДКТТ в качестве инструментального средства измерения развития учебной деятельности дает преподавателям математики возможности адекватно дифференцировать студентов с учетом их индивидуальных стилей учебной деятельности;
- диагностика процессуальных характеристик учебной деятельности, которая является внешним проявлением внутренней деятельности и психической активности студентов, позволяет получать информацию о типах нервной системы, уровне сформированности базовых когнитивных функций мозга студентов и наличии или отсутствии недостаточной специфической обучаемости математике.
2. При индивидуализации математической подготовки студентов преподавателю математики не нужно проводить специальные психологические диагностические исследования когнитивных стилей студентов, типов их нервной системы и темпераментов. Полученная в этих исследованиях диагностирующая информация имеет косвенное опосредованное отношение к учебной деятельности студентов, решающих математические задачи.
3. Применение ДКТТ в качестве инструментального средства позволяет диагностировать индивидуальные различия учебной деятельности студентов на основе данных о том процессе, который мы хотим индивидуализировать. Экспериментальные исследования эффективности применения ДКТТ показали, что индивидуализация математической подготовки студентов вузов повышает качество математического образования, вследствие увеличения продуктивной составляющей процесса обучения существенно возрастают объемы остаточных знаний и навыков решения задач по математике.
4. Разработан курс «Компьютерные системы интерактивного управления учебной деятельностью учащихся». Содержание и структура курса позволяет ввести слушателей в теоретические и практические аспекты интерактивного управления учебной деятельностью как студентов, так и школьников.
ЗАКЛЮЧЕНИЕ
1. В настоящем исследовании разработана концепция индивидуализации математической подготовки студентов вузов на основе применения средств ИКТ.
2. Впервые сформулирован принцип взаимной адаптации студента и системы обучения, обобщающий личностно ориентированный подход к обучению. Раскрыто содержание этого принципа применительно к преподаванию математики в вузе. Установлено, что принцип взаимной адаптации учебной деятельности студента включает целый комплекс приемов и интерактивность управлений, направленных на достижение максимально эффективного содействия процессу саморегуляции поиска решения задач и самоорганизации структуры системы действий обучающегося. Показано, что реализация принципа взаимной адаптации направлена на увеличение уровня самостоятельности студента.
3. На основе изучения психолого-педагогических и методико-математических аспектов, трудов ведущих отечественных и зарубежных исследователей математического образования и педагогической психологии, а также анализа опыта применения средств ИКТ в диагностике и управлении процессом обучения математике установлено, что теоретические положения концепции индивидуализации математической подготовки студентов в вузе реализуются в условиях интерактивного управления учебной деятельностью по обучению решению математических задач.
4. Сформулированы принципы интерактивного управления учебной деятельностью студентов: принцип адекватности компьютерных моделей математическим объектам; принцип моделинга, или управляемости моделей математических объектов и процессов; принцип предвидения, или прогноза состояния системы обучения; принцип обратной связи между причиной и следствием; принцип рандомизации, или управляемой неопределенности проблемной среды математических задач; принцип развития учебной деятельности.
5. Разработана функционально-структурная модель интерактивного управления учебной деятельностью студентов в процессе обучения решению математических задач, включающая информационные, институциональные и мотивационные модули управляющих воздействий, реализованных на основе средств ИКТ.
6. Анализ содержания учебного материала, осуществляемый с позиции деятельностного подхода к обучению решению математических задач, позволил выяснить типы задач, математические объекты которых можно представлять в виде компьютерных моделей. Деятельность по решению математических задач на основе средств ИКТ имеет материализованную форму, и студент осуществляет поиск решения задач, манипулируя компьютерными моделями математических объектов. Показано, что в круг таких задач входят алгоритмические задачи, отражающие функционально-графическую линию изучения начал математического анализа, задачи аналитической геометрии, а также задачи на конструирование пространственных объектов, включая геометрические задачи на построение.
7. Разработан и запатентован способ обучения и диагностики обучаемости решению задач на основе средств ИКТ, увеличивающий эффективность интерактивного управления учебной деятельностью студентов, обучающихся решению математических задач.
8. Сформулирована концепция динамических компьютерных тестов-тренажеров, основанная на: слежении и протоколировании учебных действий студента в режиме реального времени; распознавании величины рассогласования текущего и целевого состояния решения задачи (представленного информацией о «расстоянии до цели») и его корректировке через механизмы местной обратной (отрицательной и положительной) связи; изменении относительной частоты подачи информации о «расстоянии до
353 цели», обусловленной достигнутым уровнем самостоятельности учебной деятельности студента через механизмы главной обратной связи.
9. Процесс решения математических задач представляется как поиск целевого состояния задачи в пространстве состояний, что позволяет определить величину рассогласования между текущим и целевым состояниями задачи и организовать интерактивное управление учебной деятельностью студентов в процессе решения математических задач.
10. Созданы инструментальные средства интерактивного управления учебной деятельностью студентов в вузе: динамические тесты-тренажеры по математике; компьютерные системы обработки данных об учебной деятельности обучающихся.
11. Предложена система средств педагогического воздействия на студентов в процессе индивидуализации математической подготовки на основе применения динамических компьютерных тестов-тренажеров. Эти средства можно использовать как в процессе обучения математике, так и при организации самостоятельной и научно-исследовательской работы студентов. В исследовании раскрыта важная роль информационных и «институциональных» управляющих воздействий в мотивации процесса решения текущих задач, а также в формировании мотивации достижения стратегической цели научения, состоящей в достижении максимального уровня самостоятельности в решении математических задач.
12. В исследовании разработана методика интерактивного управления учебной деятельностью студентов в вузе, основанная на индикаторах диагностики процессуальных характеристик учебной деятельности студентов по решению математических задач, способствующих индивидуализации их математической подготовки. Показано, что такими индикаторами являются: параметр обратной связи обучающегося и ДКТТ; траектории поиска решения задач и уровень самостоятельности учебной деятельности студента; стратегии поиска решения задач; фазовые портреты учебной деятельности и
354 индуктивные пороги обобщений; обучаемость и динамические пределы обучаемости; уровень развития пространственного воображения; уровень способности к дифференцировке и распознаванию объектов; объем оперативной памяти; время принятия решения; уровень направленного внимания.
13. В работе рассмотрены разработанный автором диссертации курс лекций, а также организация практических занятий и мастер-классов для преподавателей математики по обучению студентов математике на основе применения динамических компьютерных тестов-тренажеров для реализации индивидуализации математической подготовки и диагностики процессуальных характеристик учебной деятельности студентов вузов.
14. Полученные результаты открывают возможности дальнейшей исследовательской работы с целью расширения сферы приложения предлагаемой концепции индивидуализации математической подготовки, разработки путей ее реализации в других дисциплинах математического цикла, а также в иных естественнонаучных циклах в высшей профессиональной школе. Кроме того, предлагаемые подходы могут найти применение в разработке методических вопросов преподавания школьной математики.
Список литературы диссертации автор научной работы: доктора педагогических наук, Дьячук, Павел Петрович, Красноярск
1. Абасов 3. Дифференциация обучения: сущность и формы//Директор школы. 1999. № 8. С. 61-65.
2. Абдеев Р.Ф. Философия информационной цивилизации. М.,1994. 335 с.
3. Аванесов B.C. Научные проблемы тестового контроля знаний. М.: исследовательский центр, 1994. 135 с
4. Аванесов B.C. Основы научной организации педагогического контроля в в в высшей школе. М.: ИЦВШ, 1988. 172 с.
5. Аванесов B.C. Основы педагогического контроля в высшей школе // Основы педагогики и психологии высшей школы / под ред. А. Б. Петровского. М.: МГУ, 1986
6. Аванесов B.C. Теоретические основы разработки заданий в тестовой форме. М.: МГТА, 1995.135 с.
7. Агибалов A.B. Конструирование тестов и методика их использования при контроле знаний учащихся по математике: дис. канд. пед. наук. М., 1986.
8. Айламазян А.К„ Стась Е.В. Информатика и теория развития. М.: Наука, 1989. 174 с.
9. Акимова М.К. Интеллект как динамический компонент в структуре способностей: дис. . докт. психол. наук. М.: Институт психологии РАН, 2003, 397 с.
10. Амосов Н.М. Моделирование мышления и психики. Киев, 1965.
11. Ананьев Б.Г. Интеллектуальное развитие взрослых как характеристика обучаемости // Советская педагогика. 1989. № 10. С. 48-57.
12. Ананьев Б.Г. Комплексное изучение человека и психологическое тестирование // Вопросы психологии. 1968. № 6.
13. Ананьев Б.Г. Человек как предмет познания. JL: ЛГУ, 1968. 389 с.
14. Анастази А., Урбина С. Психологическое тестирование. СПб.: Питер, 2003. 688 с. (Мастера психологии).
15. Андерсон Джон Р. Когнитивная психология. 5-е изд. СПб.: Питер, 2002. 496 с.16.