Темы диссертаций по педагогике » Теория и методика обучения и воспитания (по областям и уровням образования)

автореферат и диссертация по педагогике 13.00.02 для написания научной статьи или работы на тему: Единый подход к изучению величин в курсах математики и физики основной школы

Автореферат по педагогике на тему «Единый подход к изучению величин в курсах математики и физики основной школы», специальность ВАК РФ 13.00.02 - Теория и методика обучения и воспитания (по областям и уровням образования)
Автореферат
Автор научной работы
 Михеев, Виктор Васильевич
Ученая степень
 кандидата педагогических наук
Место защиты
 Киев
Год защиты
 1991
Специальность ВАК РФ
 13.00.02
Диссертация недоступна

Автореферат диссертации по теме "Единый подход к изучению величин в курсах математики и физики основной школы"

киевский государственный педагогический инсшут им. А.М. ШРЫШ)

Г' ' На правах рукописи

михеев виктор васильевич

единый подход к изучению величин в курсах ; математики и физики основной шшы

13.00.02 - методика преподавания ыатеыатиии

А ВТО Р Е В Р А Т

диссертации на соискание ученой степени Кандидата педагогмческиг наук

Киев - 1991

Работа выполнена в Киевском государственном педагогическом институте им. A.M. Горького

Научный руководитель: доктор педагогических наук,

профессор СЛЕПКАНЬ З.К.

Официальные оппоненты: - доктор педагогических наук t профессор

ГОНЧАРЕННО С.У.

- кандидат педагогических наук, доцент ЛЫСЕНКО В.И...

Ведущее учреждение: ; Черниговский государственный

педагогический институт им. Т.Г.Шевченк.

Защита состоится "¿^¿Р" 1991 г. в 15 часоЕ на

заседании специализированного совета К. ИЗ.01.04 в Киевском государственном педагогическом институте им. A.M. Горького (252030, Киев-30, ул. Пирогова, 9).

С диссертацией можно ознакомиться в библиотеке института.

Автореферат разослан ¿Я^/Р^-УсЯ 1991 г.

Ученый секретарь специализированного совета

ШВЕЦ В.А.

.ОШЯ ХАРЖШРьСТИКА РАБЬИ»

- к кт.у ал ь н о с т ь г. т о С - е.'.а. Проео^кьяге ныне преобразования в эко-но:.о;ческой, политической ц социальной сферах общественной еу.эк;. выдвигает новые требования к общеобразовательной и профессиональной сколе, обз'славлиеают новые подходы к обучению и воспитанию, подготовке подрьстаицего поколения к производительному труду.

Сдккм из резервов совершенствования учебно-воспитательного пр'сцьссэ является установление и реализация мекпредаетных связей - е&гного средства коьташксного подхода к обучению, воспитанию и развитию пкольнкков. В основе менлредыетных связей с методологической точки' зрения летжт принят единства мира, природы , к общества, с учебноР - едянстьо познавательного процесса. Ь ходе ссучекня вэаинссвязь кеп;ду учебны:.»; предметам/л, являясь отражением объективных меанаучных связей, выступает как средство интеграции знаний школьников, га: систематизации и обобщения. -

Особая роль б это!.' процессе принадлежит .математике. Б.К. Ленин, подчеркивая значение катематики для отражения единства мира, писал: "Единство природы обнаруживается б "поразительной аналогичности" дифференциальных уравнений, относящихся к различны»/ •областям явлений . •

""*.' "ТГдействуггцпх программах для средней школы Есе более усиливается тенденция углубления иенпредметных связей ьГатематики и физики, стому способствует зозрастащая роль математики и физики ь условиях ускорения научно-технического-прогресса.

I/Ленин Б.И. материализм.« эмпириокритицизм //ОСС. - Т. 18.-с.. ,306. .. .

Проблеме ыекпредметки>: :ьг.м-.р шигеиртк:--- ••• tesKir.. кссяелоьг:-учоньм', v. методистам;; У..]-;. Кслмзгсрсыд.. Ллекещцрсил 1--'.. 1а0рикантою» ?. Ьейнкько::, B.L". култево! ел:;.'. Ь.Ь. Хомут-снг.;.:. ...Ъ. Скошшой, Ь.Ь. PeiiiHanu.', К.С . лург^оь'яз::... ,-..Г, Дс.кч-:-*-тг- у. .гни: другие.

иелнрная тематика.кегхедовыа:?: пехпред'^тни:: слг/-,Г -

к физики вклвчеет г себя л гс-нрзс с ё.~р;.:;:рОЕлк;:;: понятия величин:,: и ее кгиерения Ц.Н. Колггогогох., А. Л r f. er, Ьпленкпк, 1ч. Ъерка i: др.).

Объяснение стоге ьаклячаетег. ь непосредственно!! связи вопрс-cci. намерения ьелкчкн с реализацией принципа лолитехкизус £ процессе 'обучения. Данные вопросы sitzxmzs. не только ь&хпой сопев-ляпе^н прикладной направленности курса математики, ко ;: основой, к«, которой ь значительной степени базируется изучение гическогс

f его свойств в ходе преподавания сплкки, пкжкп, биологии, пт-упо: предметен.

Б то же ьреыя научно-методические исследования е данно? об-.-сстк (Кузнецова £.7.., Иванов А.И., Хокутсккй Ъ.Д., Урвачева Л.П.. .'.гг^евь A.C., Ксетрккика H.H. и др.) в большинстве случаев рассматривают проблеет рызгеию; к ее измерения в общеобразовательной шелле г контексте гок-глеткенс ~;"чебнсго предиета, ограничиваясь с&ьергл-.-хтвг.ванп«,;: >.-е:едог, приемов к среде::- изучения г. ориентируясь на залог.енни? :- програьоиэс к учебной .литературе понятия к' оп: ¿деления. у. в то;.: чаете не учитываются. потребности других д-вольн-л-: диспиллик. к£ ставится задача выработки, основ формирования у учалинея, едкнгл: представлений' о понятии величины к ее измерения как составной части комплексного изучения общих законоыер-

\ ' ..... ,

клетей масеиатикк и физики - наук о природе. .

Аналкз курсов математики начальной школь: и У-У1 классов, •.'

- А -

ягсбры, геометрии, физики показывает, что они, в основном, либо гршг.елт различные научные подхода к заданию процесса измерения 5ъектов окружающего мира, либо, смели вал их концептуальные осно-а, придерхиваютея 7!гзличних интерпретаций трактовки понятия ье-кчины к ее места б процессе измерения без надлежащего, во мно~ кх случаях, теоретического обоснования и без учета трактования уснасти, свойств и приложений данного понятия в смежных учебных исциплинах. \

Согласно одному из подходов, вели5кньг (длина, площадь, 5ъем) являются результатом качественного сравнения (на основе аданной аксиоматики) объектов, реального вира (отрезков, фигур, ространственных тел). |

В свою очередь процесс сравнения однородных величин порокда-г мнонество действительных »'шсел, нг которое в результате изие- • эния отображается исходные величины. Однако такая позиция проти-зречит сложившейся в человеческой деятельности практике измерена, где числа перничкк по отношения к объекту измерения и сушь-ггуют до выделения свойства действительности .в качестве некото-зй величины. Дале устранение данной несогласованности с процес-. ж обучения измерениям з средней школе не позволяет расширить, членения.рассматриваемой теории на огрсьиое множество негеомет-яческих величин (скорость, энергия, работа, температура и т.д.), зскольку дефиниция последних затруднительна (если вообще возмож-1) без предварительного их измерения. '

Поэтоьгу, согласно второму подходу, измерение выступает как, внесение действительного'числа некоторому явлению, предмету или " р-оцессу охружащего мира. Бокятие величины в этом случае отсут- . гвует}' длины, плоцади» объемы к т.п. представляют собой лишь тределенные имена числовых значений. Однако дидактические сооб- .

раження, связанные с трудностью восприятия данной теории ее строгом изложении, г-алность и значимость понят/я величины требуют рассмотрения этого понятия в процессе обучения б средней ако-ле. Поэтому з учебной литературе наблюдается либо искусственное введение понятия величины е процесс измерения свойств действительности на основе определенной аксиоматики, либо величины за-даэзтея эмпирическим путем как единственные первоначальные объекты измерения.

Различное тракторание понятий величины и измерения скальных курсах математики и онзикн веде-?, э сэог очередь, к несогласованности з вопросах исрмирсвания и изменил свойств, особенностей и приложений величин, задания и определения процесса измерения, принципа, методов, средств и единиц измерения, способов у. приемов исследования действительности.

Поэтому учитель,.формируя понятия величины и измерения, не только часто не знает требовании, которым долзны удовлетворять данные вопросы курса, исходной понятийной базы,, оснозных зтапсз и оптимальных методов, но даже зная это, не мозсет еднсзренно ориентироваться на различные трактовки изучаемых понятий, залсженны-з скольких учебниках и учебных пособиях различных предметов. Следствием этого является отсутствие разумной последовательности и преемственности при изучении данных вопросов, что отрицательно

Г-

сказывается.на выработке у учащихся единых теоретически, практических и прикладных знаний, навыков и умений.

Таким образом, проблемой нашего исследования является определение . возможных путей и средств оптимального' обеспечения преем ственности и взаимосвязи по формированию и изучению понятия вели чины и ее измерения при обучении математике и физике в средней школе, а также разработка.методики реализации единого подхода к

¿sw.r: cr.rr^ciä«, спс.сс<5ствугжей пое«шоп'лз уровня знаний, * :гг,в и::ольн;-;?:оз по математике и.физике.

а г г;"! прссле;-.«к составляет цэль исследования. ■ том кл'лгголггшг избран процесс обучения »'с-сзаазнув у.-аюссся с:л-:е5:-:сЛ сколы, ¿ог^штуаший у апеолькикоа преа-стаз/лкяя о - -; способах ее ^-уеренпя.

: г -;:•■•';:::-:леаозакия является методика осуществления г??--у. - :: ; у---.".етккх связей пги фортрана.-.!«! "анлту.я ¿..-,--„-:: i'-.пчик з пколък*" ::yr;a;: маге;.:-;::;; к:-- л r::c:;;i :„ '

.: с гхихслсгс-педагогйчесной

.•c-To.,:.;;vec::on литературы, ..-.¿тодических поисков \iJoTSüo-

а;::-: : -гтелеЛ, р^ультати лвдогзгичесгзго экспер:-;:'""1 л. г.:;-.:.: г■•::-;-

:абот:: 5 пкол-э 7-возможность :~-'.;7'"7

"• -"г.,-;.- ислл-согаяия: с:;тл последсзателько осуцестьллт' -.Л

• ;гт- ¿гсэ-гкгсо и победи» понятий величина и измерении :~~r\i рсвл::г.гшй! «дхнкх тсеоо?гклй к трактовке сусноетп,

.-.•"Г'-в, а:':сенностей и приложений з.сгкатризаемых понятий :: " * вопросов, -го это дслкни ггпсо^стгснать пзвмг-м-:.::

- ::~ения, генерализации и шеггракгк знаний учапяхся'

• :: гкяике, йсрагссвзкию у зксл-киков сбобшеги-ь1:! л ууг.га:й, подготовке к пт'сиагодлтельнсму груду.

¿ля ¿¡О'Ляжвния поставленной цели и проверки сфорулира^апкс» гипотезы потребовалось решитъ гяедуюсие -задачи. I. Провести научно-методологический и психолсго-дидактичзский анализ проблемы формирования и изучения понятий величины к измерения величин. ••

Определить оптимальные условия, требования и пути обеспечения преемственности и взаимосвязи по: формированию понятий величины ■ и измерения величин в школьных курсах математики и физики..

3. Разработать методику реализации единого подхода к формировании и изучении рассматриваемых понятий и способов деятельности.

4. Экспериментально проверить эффективность разработанной методики в процессе обучения и-внедрить основные результаты исследования в педагогическую практику.

Исследования проводились на протяжении Ive7-Iv9u г. г. При сто:.; на первом этапе (ISt7-I9bb г.г.) отрабатывались теоретические основы исследования, на втором tKt-b-IvtC г.г.) - проводилась з средних сколах 27С и "Г70 г. Hv.ei'a их практическая апробация б процессе обучения и внедрение в педагогическую практику.

Методологической сонорой решения поставленных задач является:

- учение классиков ыарксизма^-леникизыа о диалектическом единстве наук о природе;

- Материалы Съезда работников народного образования-(1965 г.);

- концепция генерализации и интеграции.учебного материала и знаний учащихся.

При решении поставленных -задач использовались методы исследования:

- анализ естественно-научной, методологической, психолого-педаго-Ьической и методической литературы;

- анализ опыта работы учителей по формирование и изучению понятий величины и измерения;

- анализ знаний, умений и навыков учащихся, касающихся понятия величины и, способов ее измерения;

- апробация и коррекция результатов исследования в процессе эксперимента.

Научная новизна исследования определяется выработкой и реализацией единых содержательньк, терминологических и методических требований к заданию, трактовке и изучению понятий величины, ее

измерения и связанных с ними вопросов на основе эмпирико-матема-тлческаго- трактования сущности, свойств, особенностей и приложении рассматриваемых понятий, з обосновании необходимости и возможности организации, и изучения этих понятий на интуитивно-отра-тательнсм уровне с элемента!,ж аксиоматического метода. Теоретическая значимость исследования состоит:

- в выборе методологической и психолого-дидактической основы единого подхода к формированию и изучению понятия величины и ее измерения, согласно которой измерение определяется как ом-

пирпко-математический процесс отнесения при выбранной системе мерекия действительного числа - величине, под которой понимается объективно существующее свойство предметов, явлений и процессов действительности, заключающее в себе диалектически связанные качественные и количественные (потенциальные или реализованные) ■ компогенты.

- Практическая значимость определяется :

- разработкой методики формирования и изучения рассматриваемых понятии, в основе которой лежит деятельностный подход.к овла-

' денкэ знаниями, навыками и умениями;

- апробацией разработанной методики, которая может быть использовала учителями математики средних школ, методистами- педагогических институтов и институтов усовершенствования квалификации учителей, авторами окольных учебников. , . .

На защиту выносятся: _ .

I. Теоретические положения о едином подходе к трактованию понятий величины и измерения,величин как диалектическом единстве его эмпирических и математических характеристик; система осноеиш, свойств, характеристик и'приложений понятий величины и ее измерения. ...

2. Требования к содержанию, методам, формам и средствам о ганизации процесса обучения при формировании и изучении поняти величины и измерения величин в средней школе.

3. Методика реализации единых требований к формированию и изучению понятий величины и измерения е скольких курсах ь:атема ки и физики.

СТРУКТУРА И CCHCEîiCE СС;£Р£АЫ2 РАБСШ

Диссертационная работа написана в соответствии с темой № <П.с7.0/Сс9974 госрегистрации, разрабатываемой кафедрой мето ки преподавания математики Киевского государственного педагоги кого института им. A.il. Горького.

.Диссертация состоит из введения, двух глав, заключения. С сок использованной литературы содержит let наименований. Ь тек включены иллюстрации loi рисунок* 4 таблицы, 3 диаграммы).

Во введении излагается состояние изученности проблемы и е актуальность, обосновывается формулировка гипотезы и постанонк задач для ее проверки, излагаются отдельные пелонения, выносят на защиту, формулируется теоретическая и практическая значимое работы.

В § I первой главы "Естественно-научный и пепхолого-дида * ческий анализ проблемы формирования понятий величины и измерен величин в средней школе" в научно-методологическом и историко гносеологическом плане рассмотрен процесс развития понятия вёл ны и ее измерения* проанализированы существующие в науке и мет „ ке преподавания подходы к решению рассматриваемой проблемы.

Во втором параграфе этой главы на основе анализа роли и м понятий величины и .измерения в структуре математического понят с учетом психолого-дидактических особенностей овладения данным понятиями и способами деятельности рассмотрены основные метода

- ю -

формы и средства их изучения, базирующиеся на деятельностном подходе к процессу обучения. В соответствий с этим подходом в работе выделены критерии принадлежности к понятиям величины й измерения, ' сформулированы общие схемы изучения данных понятий, составлены схемы ориентировочной основы действий формирования знаний, навыков и умений в отношении конкретных величин и процесса их измерения, проанализированы этапы и уровни обучения в средней школе.

В §§ I и 2 второй главы диссертации изложена методика реализации единого подхода к- изучению понятия величины и измерения величин в курсах математики и физики основной школы, которая охватывает У-IX классы и касается осноеных геометрических и физических величин и процесса их измерения, на знаниях* навыках и умеки-•ях з отнесении сущности, характеристик, свойств, особенностей и приложений которых основывается углубление и расширение представлений учащихся з старших классах.

Третий параграф в т о р о й главы содержит результаты апробации и внедрения данной методики з педагогическую практику, подтверждающие принятую гипотезу о положительном влиянии экспериментальной методики на повышение- результативности обучения.

Проведенные нами теоретические и экспериментальные исследования дают возможность сделать -следующие выводы .я- ¿Ф едлояения:

I* Понятия величина и измерения являются составной частью человеческого знания в историко-гносеологическом плане. Формирование и изучение данных понятий подчинёно требованиям выработки сбсематематической культуры обучаемых* обусловлено потребностями . процесса обучения математике й физике* решает задачи-.прикладной 8 ;направленности данных курсов* способствует развитию-умений и навыков учебно-познавательной и практической деятельности учащихся.

2. Понятия величины и измерения в основной школе не могут

- а -

быть заданы па основе рассмотрения в полной Объеме и в строгом изложении математической (аксиоматической) теории величины. Формирование данных понятий в школьных курсах математики и физики возможно лишь на. интуитивно-отражательном уровне путем изучения содержания, свойств, особенностей и приложений величин и процесса юс измерения (с элементами аксиоматического метода) с последующей систематизацией и некоторым обобщением полученных знаний, умений и навыков.

3. Основой единого подхода к формирование понятий величины и измерения в школьных курсах-математики и физики является единые содержательные, терминологические и методические требования к зе данию, определению и изучению данных понятий и связанных с юши вопросов.

При этом исходной научно-методологической базой может являть ся задание понятия величины как объективно существующего свойстг предметов, явлений и процессов действительности,' заключающего в себе диалектически связанные качественные и количественные (пот« циальные или реализованные) компоненты.

Измерение "величины определяется как эмгарико-матеиатический процесс отнесения при выбранной системе и единице измерения действительного числа и задается такой аксиоматикой:

1) Каждой величине соответствует единственное При выбранной единице измерения значение величины. •

2) Равные величины имеют равные значения.

3) Если величина является суммой величия, то ее значение ра) но сумме значений ее частей.

4) Операции, определенные для величин, инвариантны относите^ но числовых значений величин. :

При этой следует отметать основные характеристики в свойств)

понятая величины л ее измерения:

1) Бэлячана яздяв-гся единственным объектом измерения. Сама предмету, явления я процессы действительности, которые отражает определенная величина, являются только измеряемыми объектами илл референта!® величин?,-!.

2) Ксядой величине соответствует единственный» неотрицательный, объективно суцестзущий размер» который характеризует количественное содержание в данном объекте свойства, соответствуй?---г? псня-гяз величина.

3) а) Результатом измерения величины (определения ее размера) является значение веяичякы - зцгшса величины э виде некоторого «лсда принятых для нее единиц.

б) Понятая значения и размера величины нз с.-улст^уч ~ сзязя с невозможностью абсолютного' определения размера точности средств измерения, самого процесса измерения, а также ИЕ-за объективно существующей бесконечности познания размера ве-лзтавд. -

з) Значение величины не тождественно действительному 'П'.с-лу5 поскольку в себе понятие значения несет определенные качественные свойства, соответствующей величины. В связи с этим в теоретическом плане недопустимо, представление значения величины как произведение числа и единицы- измерения» которое может быть интерпретировано только-как символическое описание5 но не как определение значения величины. Однако з процессе обучения- такой подход оправдан я полезен, поскольку позйоляет, опуская некоторую математическую строгость, создать адекватные психическому и умственному уровню развития учащихся приемы формирования и изучения понятий величины и измерения. Исходя из этого вводится понятие числового значения величины для обозначения отвлеченных чисел, вхо-

— ладящих в значение физической величины.

г) Понятие значение величины объединяем два самостоятельных понятия - истинного и действительного значения. Под первые понимается то значение, которое идеально отражает свойства д&нк го объекта в количественном и в качественном отношении. Нгдриме таковым может являться значение, полученное в результате теорет ческого исследования величины. Реально существушей значение, н пример, полученное в результате измерения, нагибается действительным значеш«д величины.

д) Зньченке величина -зоспсст от ьубргшой системы нзаере-;2йл (сы. п. ?)}.

4)Величины х&рыяера-угтся о^ргдг.'.-;^^ ¡и.ийаюу.агп!»»

леи) к ргз*1ерг»ое-хы>, ко'.'ораг. отрекав'. • ;и-н1:р етнон ¿аазчаяц с основное« ¿шпшнаки системы. Пс^.-:'^..-: г.£,«мекования размерно стн аезхк.-л'м авдявтся структурно-рааси^ес*«! аоняюииа:.

5) Оямчвг игсутс-'^ле в науке едипс-й

ввиду огромного разнообразия свойств огруказцег.-. следует

• указать, что лрииенительно к процессу опекая в средней сколе наибольший интерес представляют ска.тя?:«с* к глкохга»

Определяй^ критерием скалярной веягсшш ласлггсп наличие ■ ; размера; для векторной, кроне тсгс, - направле«яд й гео

метрического (векторного) слоненгл величин.

НакдоЙ векторной величине ставится в состзетсх-зае гелар, наглядным изобрааением дс,?эрэго являотся направленный отрезок. Понятия векторной величины и вектора не тождественна.

6) Величины обладает рядом свойств (сравнимость, измеримое^ слагаемость, умножение на число и другие). В то яе Бремя операции умножения (деления) величины на скалярную и векторную эелич ну не определены. Существующая запись данных операций отражает

лишь- .¿ункциональкое отношение, между величинами и относится только ;; ^.аазаенованизв аеличин, а на практик© применима лишь к числовом ;лияаниям- зелкчин.

?) Пгоцесс измерения величины задается системой измерения, догорая охватывает прикцяя, метод, средство и единиц;/ измерения,

. Под принципом измерения понимается совокупность физических явлений как основа измерения.

ламерония называется "совокупность приемов асподьзс а-:ая принципов л средств измерения, где под последними пошшзатсп измерительные технические средства, 'которые обладает нормироваянк-ул м етр о л о глч е с к ими свойствами".

Единица измерения в зависимости от подхода к трактезгнкв леня' м'Ий величины и измерения может быть определена как величина { :з упрощенном варианте как геометрическая фигура или материальный эталон) или как значение величины (число).

Несмотря на то, что последнее определение более яреемлемо для проведения практических измерений и задания физических величин, оно трудно применимо в процессе обучения в силу сложности в методическом плане. Исходя из этого, а также учитывая принятый наш з - диссертации подход к определению понятия величины на- основе нестрого заданных математических структур (путем качественного подведения к данному понятию], целесообразно, как представляется, придерживаться определения единицы измерения для процесса обучения, в-.средней школе как величины - величины, которой по определению присвоено числовое значение равное I.

. 4. Изучение рассматриваемых вопросов в средней школе основм-. вается на решении следующих задач:

I) Формирование понятия величины: ... /

а) Формирование системы знаний о сущности, содержании", свойствах,.

особенностях и приложениях скалярных и векторных величин.

б) реализация единых требований к терминологии^ символике и трактовке величины и понятий, связанных с ней (размер, значение (истинное, действительное, приближенное), наименование, размерность).

в) Выработка практических умений и навыков действий с величинами.

2) Формирование понятия измерения:

а) Формирование представления об измерении как соотнесении между величинами и действительными числами.

б) Формирование понятия алгоритма измерения.

в) Формирование знаний о принципе, методе, единице и средствах измерения.

г) Изучение свойств и особенностей измерительных операций и результатов измерения.

д) Выработка умений и навыков организации и проведения процессов измеренияи вычисления; формирование, изучение и применение понятий приближенного измерения и вычисления и связанных с этим вопросов.'

5. Изучение понятий величины и измерения в нашем исследовани) основывается на разработанном в советской психологии и педагогию деятельностном подходе к формированию личности и, в частности, » теории П.Я.Гальперина и Н.Ф.Талызиной о поэтапном формировании умственных действий. С учетом установленных ими основных типов ориентировок и соответствующих типов учения, в нашем случае представляется приемлемым третий тип ориентировочной основы действия в качестве предметного содержания которой выбраны следующие критерии : -р * -

а) в'отношений понятия величины'-

Г,- общность гвделяемого свойства для некоторого множества объектов - референтов величины;

х) возможность качественного или количественного сравнения ргсснагрлвээыкх однородных свойств (сравнимость свойств);

возможность проведения измерения (измеримость свойства); б) з отношении понятия измерения -

I; ггрявде или косвенное сравнение объекта измерения с единицей (При принятом наг.« определении объекта и единицы измерения для процесса обунеиия в средней сколе - прямое или косвенное сравнение величины с единично?, однородной величиной).

6. Общие схе?«ы ориентировочно?! основы действий при формировании к изучении конкретной величины и процесса ее измерения выглядят следующим образом: .

а) в отношении понятия величины -

1) выделение свойства предметов, явлений или процессов физического икра;

2) заявление общности рассматриваемого свойства для ряда объектов действительности;

3) выяснение места и роли свойства в человеческом познании и практике;

4) выяснение возможности качественного или количественного сравнения однородных свойств;

5) нахождение* метода определения количественных соотношений между однородными свойствами (измеряеыость свойства);

б) ваделение и задание (аксиоматическое или описательное) изучаемой величины; ' • •

7) анализ свойств и особешостей данной величины, а также связей ' ее с другими величинами;

1 8) рассмотрение процесса измерения величины и "связанных с этим

вопросов;

б) в отношении понятия измерения

1) обоснование и выбор (на интуитивном уровне плк в явном виде) системы измерения: принципа, метода, единицы и средств измерения;

2) выяснение свойств, особенностей и правил проведения процесса измерения;

3) непосредственное проведение измерения как процесса нахождения значения измеряемой величины путем сравнения с единицей измерения с помощью соответствующих средств измерения;

4). алгоритмизация измерения величины (если такая возможна);

5) установление соотношений между различными однородными единицами измерения и соответственно изучение других средств измерения; '

6) установление других методов измерения величины;

7) выяснение приближенного характера процесса измерения и результатов измерения. Нахождение погрешностей измерения и округления. '

7. В разработанной нами методике наиболее эффективными средствами обучения оказались организация проблемного обучения (эвристический метод, обучение через задачи, проблемное излонение) и ' организация самостоятельной работы учащихся. При этом особо следует выделить продуктивную направленность выполняемых учениками заданий.

6. Основное направление дальнейшей работы по проблеме исследования сводится к совершенствованию структуры и содержания шкаль-

ч

ных программ, учебников и учебных пособий по математике, физике, химии в вопросах изучения величин и процесса их измерения на основе единых положений теории величины и развития прикладной направ-

ленностк данных курсов.

Отдельные положения диссертационной работы отражены в следующих публикациях:

1. Формування та вивчення понять величина 1 вим1р»вання в середн!й школ! //1нститут - школ!: Пов1домлення 1 тезн обл.наук.-прак. конференц11. - Емтомир, 1990. - С. 201-203.

2. Понятия величины и измерения величин в процессе углубленного изучения курса математики средней школы //Совершенствование организационных форм и методов преподавания математики, информатики и вычислит&1ькой техники в школах и педвузах: Тезисы докладов Всесоюзного семинара-совещания: Ч.II. - Гулистан, 1990. -

С. 60-81.

3. Понятие измерения в школьном курсе математики и подготовка учащихся к производительному труду //Актуальные проблемы преподавания математики в общеобразовательных школах Киргизии: Тезисы докладов респ. науч.-мет. конференции. - Фрунзе, 1990. - С.44-45.

¿ыс.*.-- ^УуХ Тире* 4СО эка. Пояп. к тчят*У ОЧ-*> 252001 г.Нктомкр,уо.К.Мартса,31, Отдав ояерм. потогре^и